Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Clin Oncol ; 15(2): 161, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34295468

RESUMO

A primary reason for chemotherapy failure is chemoresistance, which is driven by various mechanisms. Multi-drug resistance (MDR) is one such mechanism that is responsible for drug extrusion from the intracellular space. MDR can be intrinsic and thus, may pre-exist the first application of chemotherapy. However, MDR may also be acquired during tumor exposure to chemotherapeutic agents. To understand whether cell clustering can influence intrinsic and acquired MDR, the present study assessed cultured monolayers (representing individual cells) and spheroids (representing clusters) formed by cisplatin-naïve (intrinsic MDR) and cisplatin-exposed (acquired MDR) lines of ovarian cancer A2780 cells by determining the cytometry of reaction rate constant (CRRC). MDR efflux was characterized using accurate and robust cell number vs. MDR efflux rate constant (k MDR) histograms. Both cisplatin-naïve and cisplatin-exposed monolayer cells presented unimodal histograms; the histogram of cisplatin-exposed cells was shifted towards a higher k MDR value suggesting greater MDR activity. Spheroids of cisplatin-naïve cells presented a bimodal histogram indicating the presence of two subpopulations with different MDR activity. In contrast, spheroids of cisplatin-exposed cells presented a unimodal histogram qualitatively similar to that of the monolayers of cisplatin-exposed cells but with a moderate shift towards greater MDR activity. A flow-cytometry assessment of multidrug resistance-associated protein 1 transporter levels in monolayers and dissociated spheroids revealed distributions similar to those of k MDR, thus, suggesting a plausible molecular mechanism for the observed differences in MDR activity. The observed greater effect of cell clustering on intrinsic rather than in acquired MDR can help guide the development of new therapeutic strategies targeting clusters of circulating tumor cells.

2.
Sci Rep ; 9(1): 1056, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705326

RESUMO

A growing body of evidence suggests a key role of tumor microenvironment, especially for bone marrow mesenchymal stem cells (MSC), in the maintenance and progression of multiple myeloma (MM), through direct and indirect interactions with tumor plasma cells. Thus, this study aimed to investigate the gene expression and functional alterations of MSC from MM patients (MM-MSC) in comparison with their normal counterparts from normal donors (ND-MSC). Gene expression analysis (Affymetrix) was performed in MM-MSC and ND-MSC after in vitro expansion. To validate these findings, some genes were selected to be evaluated by quantitative real time PCR (RT-qPCR), and also functional in vitro analyses were performed. We demonstrated that MM-MSC have a distinct gene expression profile than ND-MSC, with 485 differentially expressed genes (DEG) - 280 upregulated and 205 downregulated. Bioinformatics analyses revealed that the main enriched functions among downregulated DEG were related to cell cycle progression, immune response activation and bone metabolism. Four genes were validated by qPCR - ZNF521 and SEMA3A, which are involved in bone metabolism, and HLA-DRA and CHIRL1, which are implicated in the activation of immune response. Taken together, our results suggest that MM-MSC have constitutive abnormalities that remain present even in the absence of tumors cells. The alterations found in cell cycle progression, immune system activation, and osteoblastogenesis suggest, respectively, that MM-MSC are permanently dependent of tumor cells, might contribute to immune evasion and play an essential role in bone lesions frequently found in MM patients.


Assuntos
Osso e Ossos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Feminino , Perfilação da Expressão Gênica/métodos , Cadeias alfa de HLA-DR/genética , Cadeias alfa de HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
3.
Oncotarget ; 8(70): 114698-114709, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29383113

RESUMO

HSP70 connects multiple signaling pathways that work synergistically to protect tumor cells from death by proteotoxic stress and represents a possible target to establish a new approach for multiple myeloma treatment. Therefore, bioluminescent cell lines RPMI8226-LUC-PURO and U266-LUC-PURO were treated with HSP70 (VER155008) and/or proteasome (bortezomib) inhibitors and immunodeficient mice were used for subcutaneous xenograft models to evaluate tumor growth reduction and tumor growth inhibition after treatment. Bioluminescence imaging was used to follow tumor response. Treatment with bortezomib showed ∼60% of late apoptosis in RPMI8226-LUC-PURO (without additional benefit of VER155008 in this cell line). However, U266-LUC-PURO showed ∼60% of cell death after treatment with VER155008 (alone or with bortezomib). RPMI8226-LUC-PURO xenograft presented tumor reduction by bioluminescence imaging after treatment with bortezomib, VER155008 or drug combination compared to controls. Treatment with bortezomib, alone or combined with VER155008, showed inhibition of tumor growth assessed by bioluminescence imaging after one week in both RPMI8226-LUC-PURO and U266-LUC-PURO cell lines when compared to controls. In conclusion, our study shows that the combination of proteasome and HSP70 inhibitors induced cell death in tumor cells in vitro (late apoptosis induction) and in vivo (inhibition of tumor growth) with special benefit in U266-LUC-PURO, bearing 17p deletion.

4.
Biochim Biophys Acta ; 1862(6): 1105-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27032384

RESUMO

BACKGROUND: TP53 Regulated Inhibitor of Apoptosis 1 (TRIAP1) modulates apoptotic pathways preventing the formation of the apoptosome complex. Our group previous study showed that 90% of patients' multiple myeloma (MM) marrow-derived plasma cells present TRIAP1 overexpression as compared to normal plasma cells. Due to high prevalence and lack of information on TRIAP1's role in MM biology, we decided to explore the impact of TRAIP1 through stable gene silencing in MM cell lines and its effect on cell cycle and apoptosis. METHODS: TRIAP1 expression was examined in MM cell lines by quantitative real time PCR. Cell lines were submitted to transduction with lentiviral vector encoding a TRIAP1-specific short hairpin RNA (shRNA) and, as control, encoding a non-targeting shRNA (scramble). Apoptosis was assessed by flow cytometry with annexin V and propidium iodide staining (the later also used for cell cycle), APAF1 and Caspase 9 apoptosome related genes expression and Caspase 9 and Caspase 3/7 activity. RESULTS: RPMI8226 and U266 cell lines were chosen for transduction experiments since they present higher levels of TRIAP1 expression. Inhibition of TRIAP1 in RPMI8226 cells increased the percentage of apoptotic cells, accompanied by increased expression of APAF1 and Caspase 9, and Caspase 9 and Caspase 3/7 activity. Transduced U266 cell line did not show sustained inhibition of TRIAP1 expression nor apoptosis induction. CONCLUSION: Stable silencing of TRIAP1 induces late apoptosis through APAF1/Caspase 9 pathway at least in RPMI8226 cell line, suggesting that it could be exploited as a potential target at least for a subgroup of MM patients. GENERAL SIGNIFICANCE: In the present study, we demonstrated effects of TRIAP1 silencing on RPMI8226 MM cell line and established its mechanism mediated through APAF1 and Caspase 9. No relevant effect was found after gene silencing in U266 cell line.


Assuntos
Apoptose , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mieloma Múltiplo/genética , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/patologia , Regulação para Cima
5.
Leuk Lymphoma ; 55(5): 1176-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23885837

RESUMO

Abstract Considering the recent impact of tyrosine kinase inhibitors in the treatment of myeloproliferative disorders carrying a recurrent JAK2 mutation not identified in multiple myeloma (MM), this study aimed to search for mutations in kinase and pseudokinase domains of the JAK1 gene in an attempt to define any critical and recurring change that can be used as a therapeutic target. We obtained CD138 + purified cells from 27 bone marrow aspirates of untreated MM, four normal controls and four MM cell lines. After amplification of kinase and pseudokinase domains of JAK1 in cDNA samples, the fragments were automatically sequenced. Seventy-eight percent of MM cases showed at least one polymorphism, all being synonymous single nucleotide polymorphisms (SNPs), with allele frequencies consistent with previous studies in normal European, African American and Asian populations. The four cell lines also showed only synonymous SNPs. Mutations in the kinase and pseudokinase domains of the JAK1 gene do not seem to be important for activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway because we were not able to find any recurrent mutation in a case series of 27 patients and four MM cell lines.


Assuntos
Janus Quinase 1/genética , Janus Quinases/genética , Janus Quinases/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mutação Puntual , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Linhagem Celular Tumoral , Feminino , Frequência do Gene , Genótipo , Humanos , Janus Quinase 1/química , Janus Quinase 1/metabolismo , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...