Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893506

RESUMO

The present study aimed to evaluate the feasibility of developing low-cost N- and Fe-doped TiO2 photocatalysts for investigating the mineralization of 2,4-dimethylaniline (2,4-DMA). With a single anatase phase, the photocatalysts showed high thermal stability with mass losses of less than 2%. The predominant oxidative state is Ti4+, but there is presence of Ti3+ associated with oxygen vacancies. In materials with N, doping was interstitial in the NH3/NH4+ form and for doping with Fe, there was a presence of Fe-Ti bonds (indicating substitutional occupations). With an improved band gap energy from 3.16 eV to 2.82 eV the photoactivity of the photocatalysts was validated with an 18 W UVA lamp (340-415 nm) with a flux of 8.23 × 10-6 Einstein s-1. With a size of only 14.45 nm and a surface area of 84.73 m2 g-1, the photocatalyst doped with 0.0125% Fe mineralized 92% of the 2,4-DMA in just 180 min. While the 3% N photocatalyst with 12.27 nm had similar performance at only 360 min. Factors such as high surface area, mesoporous structure and improved Ebg, and absence of Fe peak in XPS analysis indicate that doping with 0.0125% Fe caused a modification in TiO2 structure.

2.
Environ Sci Pollut Res Int ; 26(5): 4348-4366, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29427279

RESUMO

This paper reports the degradation of 10 mg L-1 Ametryn solution with different advanced oxidation processes and by ultraviolet (UV254) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe2+ and H2O2 concentrations. The effectiveness of the UV254 and UV254/H2O2 processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV254 irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H2O2. It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H2O2. The kinetic constant of the reaction between Ametryn and HO● for UV254/H2O2 was 3.53 × 108 L mol-1 s-1. The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe2+ and H2O2 under investigation. Working with the highest concentration (150 mg L-1 H2O2 and 10 mg L-1 Fe2+), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.


Assuntos
Herbicidas/química , Triazinas/química , Triazinas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Desenho de Equipamento , Herbicidas/toxicidade , Peróxido de Hidrogênio/química , Ferro/química , Cinética , Oxirredução , Fotólise , Testes de Toxicidade Aguda , Raios Ultravioleta , Purificação da Água/instrumentação , Purificação da Água/métodos
3.
Environ Sci Pollut Res Int ; 26(5): 4415-4425, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29700752

RESUMO

Solutions with 0.65 mM of the antituberculosis drug isoniazid (INH) in 0.050 M Na2SO4 at pH 3.0 were treated by electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) processes using a cell with a BDD anode and a carbon-PTFE air-diffusion cathode. The influence of current density on degradation, mineralization rate, and current efficiency has been thoroughly evaluated in EF. The effect of the metallic catalyst (Fe2+ or Fe3+) and the formation of products like short-chain linear aliphatic carboxylic acids were assessed in PEF. Two consecutive pseudo-first-order kinetic regions were found using Fe2+ as catalyst. In the first region, at short time, the drug was rapidly oxidized by ●OH, whereas in the second region, at longer time, a resulting Fe(III)-INH complex was much more slowly removed by oxidants. INH disappeared completely at 300 min by EF, attaining 88 and 94% mineralization at 66.6 and 100 mA cm-2, respectively. Isonicotinamide and its hydroxylated derivative were identified as aromatic products of INH by GC-MS and oxalic, oxamic, and formic acids were quantified by ion-exclusion HPLC. The PEF treatment of a real wastewater polluted with the drug led to slower INH and TOC abatements because of the parallel destruction of its natural organic matter content.


Assuntos
Antituberculosos/química , Eletrodos , Isoniazida/química , Fotoquímica/métodos , Poluentes Químicos da Água/química , Boro/química , Carbono , Diamante/química , Difusão , Cromatografia Gasosa-Espectrometria de Massas , Peróxido de Hidrogênio/química , Ferro/química , Cinética , Oxirredução , Fotoquímica/instrumentação , Politetrafluoretileno , Soluções/química , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos
4.
Sci Total Environ ; 651(Pt 2): 2845-2856, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463137

RESUMO

CuO nanostructured thin films supported on silicon with 6.5 cm2 area (geometric area greater than the studies reported in the literature) were synthesized by a chemical bath deposition technique. The electrodes were characterized by MEV, XRD, XPS, contact angle, cyclic voltammetry and electrochemical impedance spectroscopy analyses. To evaluate the photoelectrochemical properties of the CuO films, photocurrent-voltage measurements were performed using linear voltammetry. The catalytic activities of CuO nanostructures were evaluated by monitoring photodegradation of Mitoxantrone (MTX) under UV-A light irradiation. The method of photoelectrocatalysis (PEC), applying a voltage of 1.5 V and assisted by adding H2O2, was undertaken. To the best of our knowledge, no studies on the degradation of anticancer agents using PEC process have been found in the literature. For comparison purposes, experiments were performed under the same conditions by assisted photocatalysis (PC) with H2O2 and direct photolysis. CuO deposits consist of a needle-like morphology. The presence of CuO in the tenorite phase was evidenced by XRD and the XPS spectra showed the presence of copper(II) oxide. The increase in current under illumination shows that CuO exhibits photoactivity. The PEC system showed a 75% level of MTX degradation, while the level achieved using PC was 50%. Under UV-A light alone only 3% removal was obtained after 180 min. Up to 10 by-products were identified by chromatography-mass spectrometry (LC-MS) with m/z values ranging between 521 and 285 and a plausible degradation route has been proposed. It is worth mentioning that 9 by-products identified in this work, were not found in the literature in other studies of degradation or products generated as metabolites. The toxicity tests of MTX before and after PEC treatment with Artemia Salina and Allium cepa showed a decrease in the acute toxicity of the medium as the antineoplastic was degraded.


Assuntos
Antineoplásicos/química , Cobre/química , Mitoxantrona/química , Nanoestruturas/química , Processos Fotoquímicos , Antineoplásicos/análise , Antineoplásicos/toxicidade , Peróxido de Hidrogênio/química , Mitoxantrona/análise , Mitoxantrona/toxicidade , Modelos Químicos
5.
Sci Total Environ ; 631-632: 1079-1088, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727934

RESUMO

Electro-oxidation with electrogenerated H2O2 (EO-H2O2) was applied to treat acidic aqueous solutions of 4-aminoantipyrine (4-AA), a persistent drug metabolite of dipyrone, in sulfate medium. Trials were made using a boron-doped diamond anode in the presence of H2O2 electrogenerated on site. A 24 central composite design (CCD) was employed to evaluate the effect of four independent variables, namely current density (j), pH, 4-AA concentration and electrolysis time, on the percentages of degradation and mineralization, as well as on mineralization current efficiency (MCE). Predicted responses agreed with observed values, showing linear trendlines with good R2 and R2adj values. The degradation was optimum at j=77.5mAcm-2, pH3.5 and 62.5mgL-1 4-AA, leading to 63% and 99% removal after 3 and 7min, respectively. For those solutions, the largest mineralization was found at j=77.5mAcm-2, attaining 45% abatement at 175min. Low MCE values were obtained in all electrolyses. An initial route for 4-AA degradation is proposed based on one dimer and eleven aromatic and aliphatic intermediates detected in the treated solutions at pH3.5 by LC-MS. The initial 62.5mgL-1 solution at pH3.5 presented acute toxicity on Artemia salina larvae, with LC50=13.6mgL-1, being substantially reduced after 3 and 7min of EO-H2O2 at j=77.5mAcm-2 due to the formation of less toxic derivatives.

6.
Chemosphere ; 199: 709-717, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29471241

RESUMO

This study describes the performance of electro-Fenton (EF) and photoelectro-Fenton (PEF) processes to degrade the herbicide tebuthiuron (TBH) in 0.050 M Na2SO4 at pH = 3.0. Experiments were performed in an undivided cell equipped with a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode that produces H2O2. Physisorbed hydroxyl radicals (M(OH)) generated from water oxidation at the anode and/or free OH formed from Fenton's reaction acted as main oxidants. All processes became much more effective using a BDD anode because of the higher oxidation power of BDD(OH). Sulfate and nitrate were the predominant ions released during TBH destruction. In both, EF and PEF treatments, two distinct kinetic regimes were observed, the first one corresponding to the oxidation of free TBH by OH and the second one to that of the Fe(III)-TBH complex by M(OH). The effect of Fe2+ and TBH concentrations on the kinetics of both regions has been examined. Moreover, a poor mineralization was reached with Pt anode, whereas almost total mineralization was attained by EF and PEF with BDD. Both processes showed analogous mineralization rates because the intermediates produced could not be photodegraded by UVA light. Gas chromatography-mass spectrometry analysis of electrolyzed solutions revealed the generation of eight heteroaromatics along with 1,3-dimethylurea, which have been included in a reaction pathway proposed for the initial degradation of TBH.


Assuntos
Técnicas Eletroquímicas/métodos , Compostos de Metilureia/química , Fotólise , Poluentes Químicos da Água/química , Boro/química , Eletrodos , Compostos Férricos/química , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Sulfatos
7.
Environ Sci Pollut Res Int ; 24(7): 6083-6095, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26983915

RESUMO

A solution with 0.38 mM of the pesticide propoxur (PX) at pH 3.0 has been comparatively treated by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). The trials were carried out with a 100-mL boron-doped diamond (BDD)/air-diffusion cell. The EO-H2O2 process had the lowest oxidation ability due to the slow reaction of intermediates with •OH produced from water discharge at the BDD anode. The EF treatment yielded quicker mineralization due to the additional •OH formed between added Fe2+ and electrogenerated H2O2. The PEF process was the most powerful since it led to total mineralization by the combined oxidative action of hydroxyl radicals and UVA irradiation. The PX decay agreed with a pseudo-first-order kinetics in EO-H2O2, whereas in EF and PEF, it obeyed a much faster pseudo-first-order kinetics followed by a much slower one, which are related to the oxidation of its Fe(II) and Fe(III) complexes, respectively. EO-H2O2 showed similar oxidation ability within the pH range 3.0-9.0. The effect of current density and Fe2+ and substrate contents on the performance of the EF process was examined. Two primary aromatic products were identified by LC-MS during PX degradation.


Assuntos
Boro/química , Diamante/química , Inseticidas , Propoxur , Poluentes Químicos da Água , Inseticidas/análise , Inseticidas/química , Oxirredução , Propoxur/análise , Propoxur/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água
8.
Sci Total Environ ; 573: 518-531, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27575359

RESUMO

This study employed direct UV-ABC photolysis and the UV-ABC/H2O2 process to investigate the degradation of tolfenamic acid (TA), a common anti-inflammatory drug used in both human and veterinary medicine. A 23 factorial design with added center point was used to evaluate the effect of three independent variables-namely, H2O2 concentration ([H2O2]), TA concentration ([TA]), and experiment time (time)-on TA degradation and H2O2 photolysis during UV-ABC/H2O2 treatment using a high-pressure mercury vapor lamp (photon flux of 2.6307 × 104 J s-1) as the UV irradiation source. The responses yielded similar values, revealing a linear behavior, with correlation coefficients R = 0.9968 and Radj = 0.9921 for TA degradation and R = 0.9828 and Radj = 0.9570 for H2O2 photolysis. The most efficient combination of variables was [H2O2] = 255 mg L-1 and [TA] = 25 mg L-1, resulting in 100% TA degradation and 98.87% H2O2 photolysis by 90 min of treatment. Additionally, the second-order kinetic constant of the reaction between TA and HO● was determined using a competitive kinetic model, employing 2,4-dichlorophenoxyacetic acid (2,4D) as the reference compound. The kinetic constant was 1.9 × 1010 M-1 s-1 in alkaline medium. TA degradation by direct photolysis generated quinone imines as by-products, responsible for the formation of a dark red "internal filter" that increased the value of acute toxicity to Artemia salina. The UV-ABC/H2O2 process did not promote formation of quinone imines by 90 min of treatment and therefore did not increase acute toxicity values. Several by-products generated during TA degradation were identified and possible degradation pathways for the UV-ABC and UV-ABC/H2O2 processes were proposed.


Assuntos
Peróxido de Hidrogênio/química , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , ortoaminobenzoatos/análise , Animais , Artemia/efeitos dos fármacos , Artemia/efeitos da radiação , Cinética , Dose Letal Mediana , Modelos Teóricos , Estrutura Molecular , Oxirredução , Fotólise , Projetos de Pesquisa , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/toxicidade , ortoaminobenzoatos/química , ortoaminobenzoatos/efeitos da radiação , ortoaminobenzoatos/toxicidade
9.
Environ Sci Pollut Res Int ; 20(4): 2352-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22886782

RESUMO

In the present study, selected advanced oxidation processes (AOPs)-namely, photo-Fenton (with Fe(2+), Fe(3+), and potassium ferrioxalate-FeOx-as iron sources), solar photo-Fenton, Fenton, and UV/H2O2-were investigated for degradation of the antineoplastic drug mitoxantrone (MTX), frequently used to treat metastatic breast cancer, skin cancer, and acute leukemia. The results showed that photo-Fenton processes employing Fe(III) and FeOx and the UV/H2O2 process were most efficient for mineralizing MTX, with 77, 82, and 90% of total organic carbon removal, respectively. MTX probably forms a complex with Fe(III), as demonstrated by voltammetric and spectrophotometric measurements. Spectrophotometric titrations suggested that the complex has a 2:1 Fe(3+):MTX stoichiometric ratio and a complexation constant (K) of 1.47 × 10(4) M(-1), indicating high MTX affinity for Fe(3+). Complexation partially inhibits the involvement of iron ions and hence the degradation of MTX during photo-Fenton. The UV/H2O2 process is usually slower than the photo-Fenton process, but, in this study, the UV/H2O2 process proved to be more efficient due to complexing of MTX with Fe(III). The drug exhibited no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cells when oxidized by UV/H2O2 or by UV/H2O2/FeOx at the concentrations tested.


Assuntos
Antineoplásicos , Peróxido de Hidrogênio/química , Ferro/química , Mitoxantrona , Fotólise , Poluentes Químicos da Água , Purificação da Água/métodos , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Camundongos , Mitoxantrona/química , Mitoxantrona/efeitos da radiação , Mitoxantrona/toxicidade , Células NIH 3T3 , Espectrofotometria , Luz Solar , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...