Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(18): 27203-27220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507164

RESUMO

Humified organic matter has been shown to decrease Pb toxicity in plants. However, there are still gaps in our understanding of the mechanism by which this phenomenon occurs. In this study, we aimed to assess the ability of humic substances (HSs), humic acids (HAs), and fulvic acids (FAs) to enhance defense mechanisms in rice plants under lead (Pb)-stressed conditions. HS fractions were isolated from vermicompost using the chemical fractionation methodology established by the International Humic Substances Society. These fractions were characterized by solid-state NMR and FTIR. Chemometric analysis was used to compare humic structures and correlate them with bioactivity. Three treatments were tested to evaluate the protective effect of humic fractions on rice plants. The first experiment involved the application of humic fractions along with Pb. The second comprised pretreatment with humic fractions followed by subsequent exposure to Pb stress. The third experiment involved Pb stress and subsequent treatment with humic fractions. The root morphology and components of the antioxidative defense system were evaluated and quantified. The results showed that HS + Pb, HA + Pb, and FA + Pb treatment preserved root growth and reduced the levels of O2- and malondialdehyde (MDA) in the roots by up to 5% and 2%, respectively. Pretreatment of the plants with humic fractions promoted the maintenance of root growth and reduced the contents of O2-, H2O2, and MDA by up to 48%, 22%, and 20%, respectively. Combined application of humic fractions and Pb reduced the Pb content in plant tissues by up to 60%, while pretreatment reduced it by up to 80%. The protective capacity of humic fractions is related to the presence of peptides, lignin, and carbohydrate fragments in their molecular structures. These results suggest that products could be developed that can mitigate the adverse effects of heavy metals on agricultural crops.


Assuntos
Benzopiranos , Substâncias Húmicas , Chumbo , Oryza , Poluentes do Solo , Estrutura Molecular , Poluição Ambiental
2.
Sci Total Environ ; 833: 155133, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427620

RESUMO

The structure of humic substances (HSs) and the humification process are critical topics for understanding the dynamics of carbon on the planet. This study aimed to assess the structural patterns of 80 humic acid (HA) samples isolated from different soils, namely, Histosols, Ferralsols, Cambisols, Mollisols, Planosols and vermicompost, by spectroscopic characterization using solid-state 13C nuclear magnetic resonance cross-polarization/magic angle spinning combined with chemometric techniques. All 80 HAs had a similar structural pattern, regardless of their source of origin, but they had different relative quantities of organic C species. The different structural amounts of the various organic C fractions generated different properties in each of the HAs. This explains why there were similarities in the HS functions but why the intensities of these functions varied among the samples from the different soil types and environments, confirming that HSs are a group of compounds with a structural identity distinct from the molecules that give rise to them. There appears to be no single definition for the humification process; therefore, for the soils from each source of origin, a specific humification process occurs that depends on the characteristics of the local environment. Humification can be understood as a process that is similar to a chemical reaction, where the key factor that determines the formation of the products is the structural characteristics of the reactants (organic substrates deposited in the soil). The degree to which the reaction progresses is governed by the reaction conditions (chemical, physical, and biological properties of the soil). The structural patterns for HSs obtained in this study justify the existence of HSs structured as self-assembled, hydrophilic and hydrophobic domains that, under certain conditions, can undergo transformations, altering the balance of organic carbon in the environment.


Assuntos
Quimiometria , Substâncias Húmicas , Carbono , Substâncias Húmicas/análise , Solo/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA