Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(12): e1005296, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26641088

RESUMO

Leishmaniasis, a human parasitic disease with manifestations ranging from cutaneous ulcerations to fatal visceral infection, is caused by several Leishmania species. These protozoan parasites replicate as extracellular, flagellated promastigotes in the gut of a sandfly vector and as amastigotes inside the parasitophorous vacuole of vertebrate host macrophages. Amastins are surface glycoproteins encoded by large gene families present in the genomes of several trypanosomatids and highly expressed in the intracellular amastigote stages of Trypanosoma cruzi and Leishmania spp. Here, we showed that the genome of L. braziliensis contains 52 amastin genes belonging to all four previously described amastin subfamilies and that the expression of members of all subfamilies is upregulated in L. braziliensis amastigotes. Although primary sequence alignments showed no homology to any known protein sequence, homology searches based on secondary structure predictions indicate that amastins are related to claudins, a group of proteins that are components of eukaryotic tight junction complexes. By knocking-down the expression of δ-amastins in L. braziliensis, their essential role during infection became evident. δ-amastin knockdown parasites showed impaired growth after in vitro infection of mouse macrophages and completely failed to produce infection when inoculated in BALB/c mice, an attenuated phenotype that was reverted by the re-expression of an RNAi-resistant amastin gene. Further highlighting their essential role in host-parasite interactions, electron microscopy analyses of macrophages infected with amastin knockdown parasites showed significant alterations in the tight contact that is normally observed between the surface of wild type amastigotes and the membrane of the parasitophorous vacuole.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/genética , Macrófagos/parasitologia , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Modelos Animais de Doenças , Leishmania braziliensis/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Transfecção , Virulência
2.
PLoS Pathog ; 10(12): e1004399, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474314

RESUMO

Trypanosomatids are unicellular protozoans of medical and economical relevance since they are the etiologic agents of infectious diseases in humans as well as livestock. Whereas Trypanosoma cruzi and different species of Leishmania are obligate intracellular parasites, Trypanosoma brucei and other trypanosomatids develop extracellularly throughout their entire life cycle. After their genomes have been sequenced, various comparative genomic studies aimed at identifying sequences involved with host cell invasion and intracellular survival have been described. However, for only a handful of genes, most of them present exclusively in the T. cruzi or Leishmania genomes, has there been any experimental evidence associating them with intracellular parasitism. With the increasing number of published complete genome sequences of members of the trypanosomatid family, including not only different Trypanosoma and Leishmania strains and subspecies but also trypanosomatids that do not infect humans or other mammals, we may now be able to contemplate a slightly better picture regarding the specific set of parasite factors that defines each organism's mode of living and the associated disease phenotypes. Here, we review the studies concerning T. cruzi and Leishmania genes that have been implicated with cell invasion and intracellular parasitism and also summarize the wealth of new information regarding the mode of living of intracellular parasites that is resulting from comparative genome studies that are based on increasingly larger trypanosomatid genome datasets.


Assuntos
Doença de Chagas/genética , Genes de Protozoários , Leishmania/genética , Leishmaniose/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Tripanossomíase Africana/genética , Animais , Bases de Dados Genéticas , Humanos
3.
BMC Microbiol ; 13: 10, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23327097

RESUMO

BACKGROUND: Amastins are surface glycoproteins (approximately 180 residues long) initially described in Trypanosoma cruzi as particularly abundant during the amastigote stage of this protozoan parasite. Subsequently, they have been found to be encoded by large gene families also present in the genomes of several species of Leishmania and in other Trypanosomatids. Although most amastin genes are organized in clusters associated with tuzin genes and are up-regulated in the intracellular stage of T. cruzi and Leishmania spp, distinct genomic organizations and mRNA expression patterns have also been reported. RESULTS: Based on the analysis of the complete genome sequences of two T. cruzi strains, we identified a total of 14 copies of amastin genes in T. cruzi and showed that they belong to two of the four previously described amastin subfamilies. Whereas δ-amastin genes are organized in two or more clusters with alternating copies of tuzin genes, the two copies of ß-amastins are linked together in a distinct chromosome. Most T. cruzi amastins have similar surface localization as determined by confocal microscopy and western blot analyses. Transcript levels for δ-amastins were found to be up-regulated in amastigotes from several T. cruzi strains, except in the G strain, which is known to have low infection capacity. In contrast, in all strains analysed, ß-amastin transcripts are more abundant in epimastigotes, the stage found in the insect vector. CONCLUSIONS: Here we showed that not only the number and diversity of T. cruzi amastin genes is larger than what has been predicted, but also their mode of expression during the parasite life cycle is more complex. Although most T. cruzi amastins have a similar surface localization, only δ-amastin genes have their expression up-regulated in amastigotes. The results showing that a sub-group of this family is up-regulated in epimastigotes, suggest that, in addition of their role in intracellular amastigotes, T. cruzi amastins may also serve important functions during the insect stage of the parasite life cycle. Most importantly, evidence for their role as virulence factors was also unveiled from the data showing that δ-amastin expression is down regulated in a strain presenting low infection capacity.


Assuntos
Regulação da Expressão Gênica , Ordem dos Genes , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , RNA Mensageiro/biossíntese , Trypanosoma cruzi/química , Trypanosoma cruzi/genética , Animais , Western Blotting , Perfilação da Expressão Gênica , Variação Genética , Microscopia Confocal
4.
Genet Mol Biol ; 35(1): 1-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22481868

RESUMO

In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...