Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(9): 4256-4273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34933408

RESUMO

Heterotrophic nanoflagellates (HNF) and ciliates are major protistan planktonic bacterivores. The term HNF, however, describes a functional guild only and, in contrast to the morphologically distinguishable ciliates, does not reflect the phylogenetic diversity of flagellates in aquatic ecosystems. Associating a function with taxonomic affiliation of key flagellate taxa is currently a major task in microbial ecology. We investigated seasonal changes in the HNF and ciliate community composition as well as taxa-specific bacterivory in four hypertrophic freshwater lakes. Taxa-specific catalyzed reporter deposition-fluorescence in situ hybridization probes assigned taxonomic affiliations to 51%-96% (average ±SD, 75 ± 14%) of total HNF. Ingestion rates of fluorescently labelled bacteria unveiled that HNF contributed to total protist-induced bacterial mortality rates more (56%) than ciliates (44%). Surprisingly, major HNF bacterivores were aplastidic cryptophytes and their Cry1 lineage, comprising on average 53% and 24% of total HNF abundance and 67% and 21% of total HNF bacterivory respectively. Kinetoplastea were important consumers of bacteria during summer phytoplankton blooms, reaching 38% of total HNF. Katablepharidacea (7.5% of total HNF) comprised mainly omnivores, with changing contributions of bacterivorous and algivorous phylotypes. Our results show that aplastidic cryptophytes, accompanied by small omnivorous ciliate genera Halteria/Pelagohalteria, are the major protistan bacterivores in hypertrophic freshwaters.


Assuntos
Cilióforos , Lagos , Bactérias/genética , Criptófitas , Ecossistema , Hibridização in Situ Fluorescente , Lagos/microbiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...