Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077486

RESUMO

The Zika virus protease NS2B-NS3 has a binding site formed with the participation of a H51-D75-S135 triad presenting two forms, active and inactive. Studies suggest that the inactive conformation is a good target for the design of inhibitors. In this paper, we evaluated the co-crystallized structures of the protease with the inhibitors benzoic acid (5YOD) and benzimidazole-1-ylmethanol (5H4I). We applied a protocol consisting of two steps: first, classical molecular mechanics energy minimization followed by classical molecular dynamics were performed, obtaining stabilized molecular geometries; second, the optimized/relaxed geometries were used in quantum biochemistry and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) calculations to estimate the ligand interactions with each amino acid residue of the binding pocket. We show that the quantum-level results identified essential residues for the stabilization of the 5YOD and 5H4I complexes after classical energy minimization, matching previously published experimental data. The same success, however, was not observed for the MM-PBSA simulations. The application of quantum biochemistry methods seems to be more promising for the design of novel inhibitors acting on NS2B-NS3.


Assuntos
Infecção por Zika virus , Zika virus , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Serina Endopeptidases/metabolismo , Succinatos , Proteínas não Estruturais Virais/metabolismo , Zika virus/metabolismo
2.
PLoS One ; 16(3): e0248394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711054

RESUMO

We aimed at evaluating the anti-asthmatic effect of cis-[Ru(bpy)2(2-MIM)(NO)](PF6)3 (FOR811A), a nitrosyl-ruthenium compound, in a murine model of allergic asthma. The anti-asthmatic effects were analyzed by measuring the mechanical lung and morphometrical parameters in female Swiss mice allocated in the following groups: untreated control (Ctl+Sal) and control treated with FOR811A (Ctl+FOR), along asthmatic groups untreated (Ast+Sal) and treated with FOR811A (Ast+FOR). The drug-protein interaction was evaluated by in-silico assay using molecular docking. The results showed that the use of FOR811A in experimental asthma (Ast+FOR) decreased the pressure-volume curve, hysteresis, tissue elastance, tissue resistance, and airway resistance, similar to the control groups (Ctl+Sal; Ctl+FOR). However, it differed from the untreated asthmatic group (Ast+Sal, p<0.05), indicating that FOR811A corrected the lung parenchyma and relaxed the smooth muscles of the bronchi. Similar to control groups (Ctl+Sal; Ctl+FOR), FOR811A increased the inspiratory capacity and static compliance in asthmatic animals (Ast+Sal, p<0.05), showing that this metallodrug improved the capacity of inspiration during asthma. The morphometric parameters showed that FOR811A decreased the alveolar collapse and kept the bronchoconstriction during asthma. Beyond that, the molecular docking using FOR811A showed a strong interaction in the distal portion of the heme group of the soluble guanylate cyclase, particularly with cysteine residue (Cys141). In summary, FOR811A relaxed bronchial smooth muscles and improved respiratory mechanics during asthma, providing a protective effect and promising use for the development of an anti-asthmatic drug.


Assuntos
Antiasmáticos , Asma , Doadores de Óxido Nítrico , Compostos Organometálicos , Mecânica Respiratória/efeitos dos fármacos , Rutênio , Animais , Antiasmáticos/química , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Asma/fisiopatologia , Feminino , Camundongos , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio/química , Rutênio/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-30524481

RESUMO

Ouratea fieldingiana (Gardner) Engl is popularly used for wound healing. This study describes the main chemical compounds present in extracts of O. fieldingiana and evaluates their biological potential by investigating antifungal, antioxidant, and anticholinesterase activities. The action mechanism of main antifungal compound was investigated by molecular docking using the enzyme sterol 14-α demethylase, CYP51, required for ergosterol biosynthesis. The seeds and leaves were extracted with ethanol in a Soxhlet apparatus and by maceration, respectively. Both extracts were subjected to silica gel column chromatography for isolation of main constituents, followed by purification in sephadex. The structures of compounds were established by 1H and 13C-NMR spectroscopy and identified by comparison with literature data as amentoflavone and kaempferol 3-O-rutinoside, respectively. The antioxidant activities of the extracts were determined by the DPPH and ABTS free radical inhibition methods. In general, the extracts with the highest antioxidant activity corresponded to those with higher content of phenolic compounds and flavonoids. The ethanol extracts and two isolated compounds presented relevant antifungal activity against several Candida strains. The in silico findings revealed that the compound amentoflavone coupled with the CYP450 protein due to the low energy stabilization (-9.39 kcal/mol), indicating a possible mechanism of action by inhibition of the ergosterol biosynthesis of Candida fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...