Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 11(4): 172, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927963

RESUMO

The resistance of Aedes aegypti to chemical insecticides has been reported and our work proposes the use of biosurfactants as an alternative larvicide. We evaluated the effect of rhamnolipids against larvae of pyrethroid-resistant and susceptible A. aegypti strains. Time-mortality and sublethal effects were evaluated via survival analysis and swimming behavior, respectively. Rhamnolipids showed larvicidal effect at all tested concentrations. Rhamnolipids at 300 mg L-1 killed 100% of both susceptible and resistant larvae within 24 h of exposure and 99% after 30-days stored (pyrethroid-susceptible larvae). Regarding the sublethal effects, the swimming rate was reduced in 50 and 100 mg L-1 of rhamnolipids in grouped (pyrethroid-susceptible) larvae. Rhamnolipids at 50 mg L-1 reduced the distance and speed and increased the number of stops and resting time of individualized pyrethroid-susceptible larvae. The larvicidal effect of the rhamnolipids evaluated demonstrates that these compounds represent an alternative to control A. aegypti.

2.
Environ Pollut ; 267: 115579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254655

RESUMO

LIMITATIONS: of bioaugmentation strategies are an obstacle for damage mitigation caused by oil spills in marine environments. Cells added to the contaminated sites are quickly lost by low adherence to the contaminants, rendering ineffective. This study used two hydrocarbonoclastic species - Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 cells - growing in mineral medium containing hexadecane to evaluate cell distribution in a crude-oil contaminated marine water. Cell affinity to hydrophobic compounds was quantified using Microbial Adhesion to Hydrocarbons test and analysis of fatty acids profile was performed using the Microbial Identification System. Bioremediation simulations were set up and cell populations of both strains were quantified by Fluorescent in situ Hybridization. R. rhodochrous and N. farcinica reached up to 97% and 60% of adhesion to hexadecane, respectively. The carbon source had more influence on the fatty acid profiles of both strains than the microbial species. The presence of 45.24% of 13:0 anteiso on total fatty acids in R. rhodochrous and 12.35% of saturated fatty acids with less than 13 carbons atoms in N. farcinica, as well as the occurrence of fatty alcohols only in presence of hexadecane in both species, are indicators that fatty acid changes are involved in the adaptation of the cells to remain at the water/oil interface. Cell quantification after bioremediation simulations revealed an increase in the density of both species, suggesting that the bioremediation strategies resulted on the increase of hydrocarbonoclastic species and up to 27.9% of all prokaryotic microbial populations in the microcosms were composed of R. rhodochrous or N. farcinica. These findings show the potential of application of these two bacterial strains in bioaugmentation of hydrocarbon-contaminated marine ecosystems.R. rhodochrous TRN7 and N. farcinica TRH1 hydrocarbonoclastic strains modify the fatty acid profile and increases density, optimizing hydrocarbons biodegradation.


Assuntos
Ecossistema , Petróleo , Alcanos , Biodegradação Ambiental , Hidrocarbonetos , Hibridização in Situ Fluorescente , Nocardia , Rhodococcus
3.
3 Biotech ; 10(11): 474, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33072469

RESUMO

This study aimed to investigate the antimicrobial, antibiofilm, and cytotoxic effects of biosurfactant lipopeptides synthesized by Bacillus subtilis TR47II. For this purpose, the lipopeptides were partially purified using a three-step process and characterized. In the first step, the crude extract obtained from acid precipitation exhibited strong antibacterial activity against the Gram-negative opportunistic pathogens Alcaligenes faecalis ATCC 8750, Achromobacter xylosoxidans ATCC 13138, Pseudomonas alcaligenes ATCC 14909, and Pseudomonas putida ATCC 15175. Moreover, partial inhibition was observed against Klebsiella aerogenes ATCC 13048 (42%), Escherichia coli ATCC 25922 (16%), and Pseudomonas aeruginosa ATCC 27853 (47%). The lipopeptides in the crude extract were extracted with methanol and fractioned on a silica gel chromatography column, rendering four TLC-pooled chromatographic fractions, named F1, F2, F3, and F4. The chromatographic fraction F4 was the most bioactive, with MIC values between 300 and 600 µg mL-1. Besides, F4 at sub-MIC doses dislodged the biofilms of A. faecalis, A. xylosoxidans, and P. alcaligenes by about 100, 85, and 81%, respectively. No cytotoxic effect was observed in mammalian cells at MIC. MALDI-TOF-MS analysis revealed that F4 contained cyclic lipopeptides belonging to two families: iturins (m/z 1004 to 1087) and fengycins (m/z 1424 to 1545). The dual effect of F4 on planktonic and sessile growth could suggest that the synergistic application of these biosurfactants could be efficient in the control of these opportunistic pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...