Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 118(32): 9792-9, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25055162

RESUMO

In this work, we make use of an atomic layer deposition (ALD) surface reaction based on trimethyl-aluminum (TMA) and water to modify O-H terminated self-assembled layers of octadecylphosphonic acid (OPA). The structural modifications were investigated by X-ray reflectivity, X-ray diffraction, and atomic force microscopy. We observed a significant improvement in the thermal stability of ALD-modified molecules, with the existence of a supramolecular packing structure up to 500 °C. Following the experimental observations, density functional theory (DFT) calculations indicate the possibility of formation of a covalent network with aluminum atoms connecting OPA molecules at terrace surfaces. Chemical stability is also achieved on top of such a composite surface, inhibiting further ALD oxide deposition. On the other hand, in the terrace edges, where the covalent array is discontinued, the chemical conditions allow for oxide growth. Analysis of the DFT results on band structure and density of states of modified OPA molecules suggests that besides the observed thermal resilience, the dielectric character of OPA layers is preserved. This new ALD-modified OPA composite is potentially suitable for applications such as dielectric layers in organic devices, where better thermal performance is required.

2.
Nanotechnology ; 24(3): 035702, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23262511

RESUMO

Short-period multilayers containing ultrathin atomic layers of Al embedded in titanium dioxide (TiO(2)) film-here called single-pulse doped multilayers-are fabricated by atomic layer deposition (ALD) growth methods. The approach explored here is to use Al atoms through single-pulsed deposition to locally modify the chemical environment of TiO(2) films, establishing a chemical control over the resistive switching properties of metal/oxide/metal devices. We show that this simple methodology can be employed to produce well-defined and controlled electrical characteristics on oxide thin films without compound segregation. The increase in volume of the embedded Al(2)O(3) plays a crucial role in tuning the conductance of devices, as well as the switching bias. The stacking of these oxide compounds and their use in electrical devices is investigated with respect to possible crystalline phases and local compound formation via chemical recombination. It is shown that our method can be used to produce compounds that cannot be synthesized a priori by direct ALD growth procedures but are of interest due to specific properties such as thermal or chemical stability, electrical resistivity or electric field polarization possibilities. The monolayer doping discussed here impacts considerably on the broadening of the spectrum of performance and technological applications of ALD-based memristors, allowing for additional degrees of freedom in the engineering of oxide devices.

3.
Langmuir ; 28(43): 15124-33, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23009090

RESUMO

Long-range order evolution of self-assembled phosphonic acid multilayers as a function of temperature is studied here for two molecules with different alkyl chain length. By using synchrotron conventional diffraction, distinct order configurations are retrieved on phosphonic acid multilayers and their thermodynamic behavior monitored by energy-dispersive diffraction. This later technique allows us to observe the system behavior near order-disorder temperatures, as well as to determine the most stable configurations in the range from room temperature up to 120 °C. Planar order is also addressed by wide-angle X-ray scattering (WAXS) transmission experiments. Order parameter phase diagrams are built based on the experimental results, showing the dominant configuration at each temperature. The multilayer molecular long-range order retrieved from the experiments is corroborated by first principles calculations based on the Density Functional Theory. The bulk configurations depicted in this work are produced by molecule-molecule interactions and allow for future comparisons with the behavior of ordered molecules in few-monolayers configurations, commonly used in organic devices, where the presence of surfaces and interfaces strongly affects the molecule packing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...