Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Expert Opin Ther Pat ; 34(5): 315-332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38847054

RESUMO

INTRODUCTION: TRPA1 is a nonselective calcium channel, a member of the transient receptor potential (TRP) superfamily, also referred to as the 'irritant' receptor, being activated by pungent and noxious exogenous chemicals as well as by endogenous algogenic stimuli, to elicit pain, itching, and inflammatory conditions. For this reason, it is considered an attractive therapeutic target to treat a wide range of diseases including acute and chronic pain, itching, and inflammatory airway diseases. AREAS COVERED: The present review covers patents on TRPA1 antagonists disclosed from 2020 to present, falling in the following main classes: i) novel therapeutic applications for known or already disclosed antagonists, ii) identification and characterization of TRPA1 antagonists from natural sources, and iii) synthesis and evaluation of novel compounds. EXPERT OPINION: Despite the limited number of TRPA1 antagonists in clinical trials, there is an ever-growing interest on this receptor-channel as therapeutic target, mainly due to the relevant outcomes from basic research, which unveiled novel physio-pathological mechanisms where TRPA1 is believed to play a pivotal role, for example the Alzheimer's disease or ocular diseases, expanding the panel of potential therapeutic applications for TRPA1 modulators.


Assuntos
Patentes como Assunto , Canal de Cátion TRPA1 , Humanos , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/metabolismo , Animais , Dor/tratamento farmacológico , Dor/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Desenvolvimento de Medicamentos
2.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502542

RESUMO

Opsins play a key role in the ability to sense light both in image-forming vision and in non-visual photoreception (NVP). These modalities, in most animal phyla, share the photoreceptor protein: an opsin-based protein binding a light-sensitive chromophore by a lysine (Lys) residue. So far, visual and non-visual opsins have been discovered throughout the Metazoa phyla, including the photoresponsive Hydra, an eyeless cnidarian considered the evolutionary sister species to bilaterians. To verify whether light influences and modulates opsin gene expression in Hydra, we utilized four expression sequence tags, similar to two classic opsins (SW rhodopsin and SW blue-sensitive opsin) and two non-visual opsins (melanopsin and peropsin), in investigating the expression patterns during both diurnal and circadian time, by means of a quantitative RT-PCR. The expression levels of all four genes fluctuated along the light hours of diurnal cycle with respect to the darkness one and, in constant dark condition of the circadian cycle, they increased. The monophasic behavior in the L12:D12 cycle turned into a triphasic expression profile during the continuous darkness condition. Consequently, while the diurnal opsin-like expression revealed a close dependence on light hours, the highest transcript levels were found in darkness, leading us to novel hypothesis that in Hydra, an "internal" biological rhythm autonomously supplies the opsins expression during the circadian time. In conclusion, in Hydra, both diurnal and circadian rhythms apparently regulate the expression of the so-called visual and non-visual opsins, as already demonstrated in higher invertebrate and vertebrate species. Our data confirm that Hydra is a suitable model for studying ancestral precursor of both visual and NVP, providing useful hints on the evolution of visual and photosensory systems.


Assuntos
Cnidários , Hydra , Animais , Opsinas/genética , Opsinas/química , Opsinas/metabolismo , Cnidários/genética , Cnidários/metabolismo , Hydra/genética , Hydra/metabolismo , Filogenia , Ritmo Circadiano/genética
3.
J Nat Prod ; 87(4): 722-732, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408345

RESUMO

The first detailed phytochemical analysis of the cannabigerol (CBG)-rich chemotype IV of Cannabis sativa L. resulted in the isolation of the expected cannabigerolic acid/cannabigerol (CBGA/CBG) and cannabidiolic acid/cannabidiol (CBDA/CBD) and of nine new phytocannabinoids (5-13), which were fully characterized by HR-ESIMS and 1D and 2D NMR. These included mono- or dihydroxylated CBGA/CBG analogues, a congener with a truncated side chain (10), cyclocannabigerol B (11), and the CBD derivatives named cannabifuranols (12 and 13). Cyclocannabigerol B and cannabifuranols are characterized by a novel phytocannabinoid structural architecture. The isolated phytocannabinoids were assayed on the receptor channels TRPA1 and TRPM8, unveiling a potent dual TRPA1 agonist/TRPM8 antagonist profile for compounds 6, 7, and 14. Chiral separation of the two enantiomers of 5 resulted in the discovery of a synergistic effect of the two enantiomers on TRPA1.


Assuntos
Canabinoides , Cannabis , Canal de Cátion TRPA1 , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Cannabis/química , Canal de Cátion TRPA1/antagonistas & inibidores , Canabinoides/farmacologia , Canabinoides/química , Canabinoides/isolamento & purificação , Canais de Cátion TRPM/antagonistas & inibidores , Estrutura Molecular , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Humanos , Canabidiol/farmacologia , Canabidiol/química , Canais de Cálcio/metabolismo
4.
J Med Chem ; 66(10): 6994-7015, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37192374

RESUMO

We describe an in silico-guided rational drug design and the synthesis of the suggested ligands, aimed at improving the TRPV1-ligand binding properties and the potency of N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl) butanamide I, a previously identified TRPV1 agonist. The docking experiments followed by molecular dynamics simulations and thermodynamic analysis led the drug design toward both the introduction of a lipophilic iodine and a flat pyridine/benzene at position 5 of the thiophene nucleus. Most of the synthesized compounds showed high TRPV1 efficacy and potency as well as selectivity. The molecular modeling analysis highlighted crucial hydrophobic interactions between Leu547 and the iodo-thiophene nucleus, as in amide 2a, or between Phe543 and the pyridinyl moiety, as in 3a. In the biological evaluation, both compounds showed protective properties against oxidative stress-induced ROS formation in human keratinocytes. Additionally, while 2a showed neuroprotective effects in both neurons and rat brain slices, 3a exhibited potent antinociceptive effect in vivo..


Assuntos
Simulação de Dinâmica Molecular , Tiofenos , Ratos , Animais , Humanos , Tiofenos/farmacologia , Tiofenos/química , Estresse Oxidativo , Amidas , Desenho de Fármacos , Simulação de Acoplamento Molecular , Canais de Cátion TRPV/agonistas
5.
Methods Mol Biol ; 2576: 119-131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152181

RESUMO

The transient receptor potential vanilloid 1 ion channel (TRPV1) is a ligand-gated nonselective calcium-permeant cation channel involved in the detection of a wide variety of chemical and physical noxious stimuli, ranging from exogenous and endogenous ligands to noxious heat (>42 °C) and low pH (pH < 5.2). Due to its central role in pain and hyperalgesia, TRPV1 is considered a relevant therapeutic target for the development of analgesic and anti-inflammatory drugs potentially useful to relieve chronic, neuropathic, and inflammatory pain and to treat disorders such as inflammatory bowel disease. In this view, the availability of in vitro assays for the screening of novel TRPV1 modulators is highly desirable. Since TRPV1 activation leads to an increase in the intracellular calcium (Ca2+) levels, the use of Ca2+ fluorescent indicators represent a valuable and sensitive tool for monitoring such intracellular changes. In this chapter, we describe methods for recording and monitoring Ca2+ signals through the fluorescent indicators Fluo-4 acetoxymethyl (AM) and Fura-2 AM in HEK-293 cells transfected with TRPV1 or other thermoTRP channels.


Assuntos
Canais de Potencial de Receptor Transitório , Analgésicos , Cálcio/metabolismo , Capsaicina , Cátions , Fluorescência , Fura-2 , Células HEK293 , Humanos , Ligantes , Dor/tratamento farmacológico , Canais de Cátion TRPV/fisiologia
6.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362364

RESUMO

α-Lipoic acid is a sulfur-containing nutrient endowed with pleiotropic actions and a safe biological profile selected to replace the unsaturated alkyl acid of capsaicin with the aim of obtaining lipoic amides potentially active as a TRPV1 ligand and with significant antioxidant properties. Thus, nine compounds were obtained in good yields following a simple synthetic procedure and tested for their functional TRPV1 activity and radical-scavenger activity. The safe biological profile together with the protective effect against hypoxia damage as well as the in vitro antioxidant properties were also evaluated. Although less potent than capsaicin, almost all lipoic amides were found to be TRPV1 agonists and, specifically, compound 4, the lipoic analogue of capsaicin, proved to be the best ligand in terms of efficacy and potency. EPR experiments and in vitro biological assays suggested the potential protective role against oxidative stress of the tested compounds and their safe biological profile. Compounds 4, 5 and 9 significantly ameliorated the mitochondrial membrane potential caused by hypoxia condition and decreased F2-isoprostanes, known markers of oxidative stress. Thus, the experimental results encourage further investigation of the therapeutic potential of these lipoic amides.


Assuntos
Capsaicina , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Antioxidantes/farmacologia , Amidas/farmacologia , Ligantes , Estresse Oxidativo , Hipóxia
7.
Biomolecules ; 11(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34439801

RESUMO

The potential, multifaceted therapeutic profile of cannabidiol (CBD), a major constituent derived from the Cannabis sativa plant, covers a wide range of neurological and psychiatric disorders, ranging from anxiety to pediatric epilepsy and drug addiction. However, the molecular targets responsible for these effects have been only partially identified. In this view, the involvement of the orexin system, the key regulator in arousal and the sleep/wake cycle, and in motivation and reward processes, including drug addiction, prompted us to explore, using computational and experimental approaches, the possibility that CBD could act as a ligand of orexin receptors, orexin 1 receptor of type 1 (OX1R) and type 2 (OX2R). Ligand-binding assays showed that CBD is a selective ligand of OX1R in the low micromolar range (Ki 1.58 ± 0.2 µM) while in vitro functional assays, carried out by intracellular calcium imaging and mobilization assays, showed that CBD acts as an antagonist at this receptor. Finally, the putative binding mode of CBD has been inferred by molecular docking and molecular dynamics simulations and its selectivity toward the OX1R subtype rationalized at the molecular level. This study provides the first evidence that CBD acts as an OX1R antagonist, supporting its potential use in addictive disorders and/or body weight regulation.


Assuntos
Ansiolíticos/farmacologia , Anticonvulsivantes/farmacologia , Canabidiol/farmacologia , Receptores de Orexina/química , Orexinas/química , Animais , Ansiolíticos/química , Ansiolíticos/metabolismo , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Sítios de Ligação , Células CHO , Cálcio/metabolismo , Canabidiol/química , Canabidiol/metabolismo , Cricetulus , Expressão Gênica , Humanos , Cinética , Simulação de Acoplamento Molecular , Imagem Molecular , Antagonistas dos Receptores de Orexina , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ensaio Radioligante , Transgenes
8.
Biomedicines ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440274

RESUMO

The affinity of cannabinoids for their CB1 and CB2 metabotropic receptors is dramatically affected by a combination of α-branching and elongation of their alkyl substituent, a maneuver exemplified by the n-pentyl -> α,α-dimethylheptyl (DMH) swap. The effect of this change on other cannabinoid end-points is still unknown, an observation surprising since thermo-TRPs are targeted by phytocannabinoids with often sub-micromolar affinity. To fill this gap, the α,α-dimethylheptyl analogues of the five major phytocannabinoids [CBD (1a), Δ8-THC (6a), CBG (7a), CBC (8a) and CBN (9a)] were prepared by total synthesis, and their activity on thermo-TRPs (TRPV1-4, TRPM8, and TRPA1) was compared with that of one of their natural analogues. Surprisingly, the DMH chain promoted a shift in the selectivity toward TRPA1, a target involved in pain and inflammatory diseases, in all investigated compounds. A comparative study of the putative binding modes at TRPA1 between DMH-CBC (8b), the most active compound within the series, and CBC (8a) was carried out by molecular docking, allowing the rationalization of their activity in terms of structure-activity relationships. Taken together, these observations qualify DMH-CBC (8b) as a non-covalent TRPA1-selective cannabinoid lead that is worthy of additional investigation as an analgesic and anti-inflammatory agent.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33915294

RESUMO

N-Arachidonoyl-ethanolamine (AEA) is an endocannabinoid (eCB) and endogenous lipid mimicking many of the effects of Δ9-tetrahydrocannabinol, notably on brain functions, appetite, pain and inflammation. The eCBs and eCB-like compounds contain fatty acids, the main classes being the monoacylglycerols and the N-acyl-ethanolamines (NAEs). Thus, each long chain fatty acid likely exists under the form of a monoacylglycerol and NAE, as it is the case for arachidonic acid (AA) and linoleic acid (LA). Following their biosynthesis, AA and AEA can be further metabolized into additional eicosanoids, notably by the 15-lipoxygenase pathway. Thus, we postulated that NAEs possessing a 1Z,4Z-pentadiene motif, near their omega end, would be transformed into their 15-lipoxygenase metabolites. As a proof of concept, we investigated N-linoleoyl-ethanolamine (LAE). We successfully synthesized LEA and LEA-d4 as well as their 15-lipoxygenase-derived derivatives, namely 13-hydroxy-9Z,11E-octadecadienoyl-N-ethanolamine (13-HODE-EA) and 13-HODE-EA-d4, using Novozyme 435 immobilized on acrylic resin and soybean lipoxygenase respectively. We also show that both human 15-lipoxygenase-1 and -2 can biosynthesize 13-HODE-EA. Co-incubation of LEA and LA with either human 15-lipoxygenase led to the biosynthesis of 13-HODE-EA and 13-HODE in a ratio equal to or greater than 3:1, indicating that LEA is preferred to LA by these enzymes. Finally, we show that 13-HODE-EA is found in human saliva and skin and is a weak although selective TRPV1 agonist. The full biological importance of 13-HODE-EA remains to be explored.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Etanolamina/metabolismo , Ácidos Linoleicos/síntese química , Saliva/metabolismo , Pele/metabolismo , Técnicas de Química Sintética , Humanos , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacologia , Terapia de Alvo Molecular
10.
Cells ; 10(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672574

RESUMO

Palmitoylethanolamide (PEA) is an endogenous anti-inflammatory lipid mediator and a widely used nutraceutical. In this study, we designed, realized, and tested a drug-carrier conjugate between PEA (the active drug) and glucuronic acid (the carrier). The conjugate, named GLUPEA, was characterized for its capability of increasing PEA levels and exerting anti-inflammatory activity both in vitro and in vivo. GLUPEA treatment, compared to the same concentration of PEA, resulted in higher cellular amounts of PEA and the endocannabinoid 2-arachidonoyl glycerol (2-AG), and increased 2-AG-induced transient receptor potential vanilloid type 1 (TRPV1) channel desensitization to capsaicin. GLUPEA inhibited pro-inflammatory monocyte chemoattractant protein 2 (MCP-2) release from stimulated keratinocytes, and it was almost as efficacious as ultra-micronized PEA at reducing colitis in dinitrobenzene sulfonic acid (DNBS)-injected mice when using the same dose. GLUPEA is a novel pro-drug able to efficiently mimic the anti-inflammatory and endocannabinoid enhancing actions of PEA.


Assuntos
Amidas/farmacologia , Sistemas de Liberação de Medicamentos , Etanolaminas/farmacologia , Ácido Glucurônico/farmacologia , Ácidos Palmíticos/farmacologia , Amidas/química , Amidas/uso terapêutico , Animais , Ácidos Araquidônicos/metabolismo , Cálcio/metabolismo , Quimiocina CCL8/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/patologia , Dinitrofluorbenzeno/análogos & derivados , Endocanabinoides/metabolismo , Etanolaminas/química , Etanolaminas/uso terapêutico , Ácido Glucurônico/química , Ácido Glucurônico/uso terapêutico , Glicerídeos/metabolismo , Células HEK293 , Células HaCaT , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos Endogâmicos ICR , Modelos Biológicos , Ácidos Palmíticos/química , Ácidos Palmíticos/uso terapêutico , Peroxidase/metabolismo , Poli I-C/farmacologia , Canais de Cátion TRPV/metabolismo
11.
J Nat Prod ; 83(11): 3476-3481, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33136399

RESUMO

As part of a study on triterpenoid conjugates, the dietary pentacyclic triterpenoids oleanolic (2a) and ursolic acids (3a) were coupled with vanillamine, and the resulting amides (2b and 3b, respectively) were assayed for activity on the vanilloid receptor TRPV1. Despite a structural difference limited to the location of a methyl group in their conformationally rigid pentacyclic core, oleanoloyl vanillamide dramatically outperformed ursoloyl vanillamide in terms of potency (EC50 = 35 ± 2 nM for 2b and 5.4 ± 2.3 µM for 3b). Using molecular docking and dynamics, this difference was translated into distinct accommodation modes at the TRPV1 vanillyl ligand pocket, suggesting a critical role of a C-H πphenyl interaction between the triterpenoid C-29 methyl and Phe591 of TRPV1. Because the molecular mechanisms underlying the activation process of transient receptor channels (TRPs) remain to be fully elucidated, the observation of spatially restricted structure-activity information is of significant relevance to identify the molecular detail of TRPV1 ligand gating.


Assuntos
Amidas/química , Descoberta de Drogas , Canais de Cátion TRPV/efeitos dos fármacos , Triterpenos/farmacologia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Triterpenos/química
12.
Mar Drugs ; 18(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081023

RESUMO

Labdane diterpenes are widespread classes of natural compounds present in variety of marine and terrestrial organisms and plants. Many of them represents "natural libraries" of compounds with interesting biological activities due to differently functionalized drimane nucleus exploitable for potential pharmacological applications. The transient receptor potential channel subfamily V member 4 (TRPV4) channel has recently emerged as a pharmacological target for several respiratory diseases, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Inspired by the labdane-like bicyclic core, a series of homodrimane-derived esters and amides was designed and synthesized by modifying the flexible tail in position 1 of (+)-sclareolide, an oxidized derivative of the bioactive labdane-type diterpene sclareol. The potency and selectivity towards rTRPV4 and hTRPV1 receptors were assessed by calcium influx cellular assays. Molecular determinants critical for eliciting TRPV4 antagonism were identified by structure-activity relationships. Among the selective TRPV4 antagonists identified, compound 6 was the most active with an IC50 of 5.3 µM. This study represents the first report of semisynthetic homodrimane TRPV4 antagonists, selective over TRPV1, and potentially useful as pharmacological tools for the development of novel TRPV4 channel modulators.


Assuntos
Diterpenos/síntese química , Diterpenos/farmacologia , Desenho de Fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Relação Estrutura-Atividade
13.
J Nat Prod ; 83(9): 2727-2736, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32880179

RESUMO

Cannabitwinol (CBDD, 3), the second member of a new class of dimeric phytocannabinoids in which two units are connected by a methylene bridge, was isolated from a hemp (Cannabis sativa L.) industrial extract. The structural characterization of cannabitwinol, complicated by broadening of 1H NMR signals and lack of expected 2D NMR correlations at room temperature, was fully carried out in methanol-d4 at -30 °C. All the attempts to prepare CBDD by reaction of CBD with formaldehyde or its iminium analogue (Eschenmoser salt) failed, suggesting that this sterically congested dimer is the result of enzymatic reactions on the corresponding monomeric acids. Analysis of the cannabitwinol profile of transient receptor potential (TRP) modulation evidenced the impact of dimerization, revealing a selectivity for channels activated by a decrease of temperature (TRPM8 and TRPA1) and the lack of significant affinity for those activated by an increase of temperature (e.g., TRPV1). The putative binding modes of cannabitwinol with TRPA1 and TRPM8 were investigated in detail by a molecular docking study using the homology models of both channels.


Assuntos
Canabinoides/química , Canabinoides/farmacologia , Cannabis/química , Canabinoides/biossíntese , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Canal de Cátion TRPA1/efeitos dos fármacos , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPV/efeitos dos fármacos , Temperatura , Canais de Potencial de Receptor Transitório/efeitos dos fármacos
14.
Bioorg Med Chem ; 28(11): 115513, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32340793

RESUMO

Focusing on the importance of the free phenolic hydroxyl moiety, a family of 23 alkylresorcinol-based compounds were developed and evaluated for their cannabinoid receptor binding properties. The non-symmetrical hexylresorcinol derivative 29 turned out to be a CB2-selective competitive antagonist/inverse agonist endowed with good potency. Both the olivetol- and 5-(2-methyloctan-2-yl)resorcinol-based derivatives 23 and 24 exhibited a significant antinociceptive activity. Interestingly, compound 24 proved to be able to activate both cannabinoid and TRPV1 receptors. Even if cannabinoid receptor subtype selectivity remained a goal only partially achieved, results confirm the validity of the alkylresorcinol nucleus as skeleton for the identification of potent cannabinoid receptor modulators.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Receptores de Canabinoides/metabolismo , Resorcinóis/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Estrutura Molecular , Ratos , Resorcinóis/química , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
15.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138197

RESUMO

Phytocannabinoids (pCBs) are a large family of meroterpenoids isolated from the plant Cannabis sativa. Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the best investigated phytocannabinoids due to their relative abundance and interesting bioactivity profiles. In addition to various targets, THC and CBD are also well-known agonists of peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor involved in energy homeostasis and lipid metabolism. In the search of new pCBs potentially acting as PPARγ agonists, we identified cannabimovone (CBM), a structurally unique abeo-menthane pCB, as a novel PPARγ modulator via a combined computational and experimental approach. The ability of CBM to act as dual PPARγ/α agonist was also evaluated. Computational studies suggested a different binding mode toward the two isoforms, with the compound able to recapitulate the pattern of H-bonds of a canonical agonist only in the case of PPARγ. Luciferase assays confirmed the computational results, showing a selective activation of PPARγ by CBM in the low micromolar range. CBM promoted the expression of PPARγ target genes regulating the adipocyte differentiation and prevented palmitate-induced insulin signaling impairment. Altogether, these results candidate CBM as a novel bioactive compound potentially useful for the treatment of insulin resistance-related disorders.


Assuntos
Canabinoides/química , Canabinoides/farmacologia , Cannabis/química , PPAR gama/agonistas , PPAR gama/metabolismo , Células 3T3-L1 , Animais , Metabolismo Energético/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Resistência à Insulina/fisiologia , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Molecules ; 25(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098328

RESUMO

Moringa oleifera Lam. is a tropical plant widely used in traditional medicines and as a food supplement. It is characterized by the presence of glucosinolates and isothiocyanates; the stable isothiocyanate 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate (moringin) has been widely studied for its bioactivity as hypoglycemic, antimicrobial, anticancer and in particular for its involvement in nociception and neurogenic pain. Moringa extracts and pure moringin were submitted to in vitro assays with the somatosensory TRPA1 ion channel, proving that moringin is a potent and effective agonist of this receptor involved in nociceptive function and pain states. Moringin do not activate or activates very weakly the vanilloids somatosensory channels TRPV1,2,3 and 4, and the melastatin cooling receptor TRPM8. The comparison of moringin's activity with other known agonists of natural origin is also discussed.


Assuntos
Isotiocianatos/farmacologia , Moringa oleifera/química , Dor Nociceptiva/tratamento farmacológico , Canal de Cátion TRPA1/genética , Células HEK293 , Humanos , Isotiocianatos/química , Dor Nociceptiva/patologia , Nociceptores/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Córtex Somatossensorial , Canal de Cátion TRPA1/antagonistas & inibidores , Canais de Cátion TRPM/genética , Transfecção
17.
Molecules ; 24(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857138

RESUMO

Sisymbrium officinale (L.) Scop. is a wild common plant of the Brassicaceae family. It is known as "the singers' plant" for its traditional use in treating aphonia and vocal disability. Despite its wide use in herbal preparations, the molecular mechanism of action of S. officinale extracts is not known. The plant is rich in glucosinolates and isothiocyanates, which are supposed to be its active compounds. Some members of this family, in particular allylisothiocyanate, are strong agonists of the transient receptor potential ankyrin 1 (TRPA1) channel, which is involved in the somatosensory perception of pungency as well as in the nociception pathway of inflammatory pain. This study aims to isolate the glucosinolates and isothiocianates from fresh S. officinale to identify the major components and test their activity in in vitro assays with a cloned TRPA1 channel. Samples of cultivated S. officinale have been extracted and the active compounds isolated by column chromatography, HPLC and PTLC. The main components glucoputranjivin, isopropylisothiocyanate and 2-buthylisothiocianate have been tested on TRPA1. The glucosinolates glucoputranjivin and sinigrin turned out to be inactive, while isopropylisothiocyanate and 2-buthylisothiocyanate are potent agonists of TRPA1, with an EC50 in the range of the high potency natural agonists identified so far for this somatosensory channel.


Assuntos
Brassicaceae/metabolismo , Glucosinolatos/metabolismo , Isotiocianatos/metabolismo , Canal de Cátion TRPA1/metabolismo , Brassicaceae/genética , Canal de Cátion TRPA1/genética
18.
Curr Cardiol Rev ; 15(4): 244-251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30848206

RESUMO

Transient receptor potential vanilloid channel 2 (TRPV2) is required for normal cardiac contractility. The stimulation of TRPV1 in isolated cardiomyocytes can aggravate the effect of hypoxia/ reoxygenation (H/R) on H9C2 cells. The knockout of the TRPV1 gene promotes increased tolerance of the isolated perfused heart to the impact of ischemia/reperfusion (I/R). However, activation of TRPV1 increases the resistance of the heart to I/R due to calcitonin gene-related peptide (CGRP) release from afferent nerve endings. It has been established that TRPV1 and TRPV2 are involved in the pathogenesis of myocardial infarction and, in all likelihood, ensure the cardiac tolerance to the ischemia/reperfusion. It has also been documented that the activation of TRPV4 negatively affects the stability of cardiomyocytes to the H/R. The blockade of TRPV4 can be considered as a new approach to the prevention of I/R injury of the heart. Studies also indicate that TRPV1 is involved in the pathogenesis of cardiac hypertrophy and that TRPV2 channels participate in the pathogenesis of dilated cardiomyopathy. Excessive expression of TRPV2 leads to chronic Ca2+- overload of cardiomyocytes, which may contribute to the development of cardiomyopathy.


Assuntos
Coração/fisiopatologia , Canais de Cátion TRPV/fisiologia , Humanos
19.
Br J Pharmacol ; 176(10): 1568-1584, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30074247

RESUMO

BACKGROUND AND PURPOSE: Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, results in chronic inflammation and irreversible skeletal muscle degeneration. Moreover, the associated impairment of autophagy greatly contributes to the aggravation of muscle damage. We explored the possibility of using non-euphoric compounds present in Cannabis sativa, cannabidiol (CBD), cannabidivarin (CBDV) and tetrahydrocannabidivarin (THCV), to reduce inflammation, restore functional autophagy and positively enhance muscle function in vivo. EXPERIMENTAL APPROACH: Using quantitative PCR, western blots and [Ca2+ ]i measurements, we explored the effects of CBD and CBDV on the differentiation of both murine and human skeletal muscle cells as well as their potential interaction with TRP channels. Male dystrophic mdx mice were injected i.p. with CBD or CBDV at different stages of the disease. After treatment, locomotor tests and biochemical analyses were used to evaluate their effects on inflammation and autophagy. KEY RESULTS: CBD and CBDV promoted the differentiation of murine C2C12 myoblast cells into myotubes by increasing [Ca2+ ]i mostly via TRPV1 activation, an effect that undergoes rapid desensitization. In primary satellite cells and myoblasts isolated from healthy and/or DMD donors, not only CBD and CBDV but also THCV promoted myotube formation, in this case, mostly via TRPA1 activation. In mdx mice, CBD (60 mg·kg-1 ) and CBDV (60 mg·kg-1 ) prevented the loss of locomotor activity, reduced inflammation and restored autophagy. CONCLUSION AND IMPLICATIONS: We provide new insights into plant cannabinoid interactions with TRP channels in skeletal muscle, highlighting a potential opportunity for novel co-adjuvant therapies to prevent muscle degeneration in DMD patients. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Assuntos
Canabidiol/farmacologia , Canabinoides/farmacologia , Cannabis/química , Dronabinol/análogos & derivados , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canabidiol/isolamento & purificação , Canabinoides/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Dronabinol/isolamento & purificação , Dronabinol/farmacologia , Distrofina/genética , Endocanabinoides/metabolismo , Humanos , Masculino , Camundongos , Força Muscular/efeitos dos fármacos , Força Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
20.
Neuropeptides ; 72: 38-46, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30396596

RESUMO

Palatability and variety of foods are major reasons for hedonic eating, and hence for obesity. Hemopressin, a hemoglobin α chain-derived peptide, plays antagonist/inverse agonist role on cannabinoid (CB)1 receptors, while RVD-hemopressin(α)[RVD-hp(α)], a N-terminally extended form of hemopressin, has been reported as an allosteric modulator of CB1 and CB2 receptors. We investigated the effects of 14 daily intraperitoneal injections of RVD-hp(α), in Sprague-Dawley rats fed a highly palatable cafeteria-style (CAF) diet (30% fat, 56% carbohydrate, 14% protein; 4.20 kcal/g) compared to standard laboratory chow (STD) food (3.5% fat, 63% carbohydrate, 14% protein, 19.5% other components without caloric value; 3.20 kcal). Food intake, body weight and locomotor activity were recorded throughout the study. Finally, rats were sacrificed and agouti-related peptide (AgRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) and fatty acid amide hydrolase (FAAH) gene expression in the hypothalamus was measured by real-time reverse transcription polymerase chain reaction. We found that CAF diet increased food intake as compared to STD diet. In both STD and CAF diet fed rats, RVD-hp(α) treatment inhibited food intake, increased locomotor activity but did not modify body weight. In vehicle injected animals, CAF as compared to STD diet increased AgRP gene expression. RVD-hp(α) treatment decreased POMC mRNA levels in both diet groups and lowered the elevated AgRP levels induced by CAF diet. RVD-hp(α) treatment plays an anorexigenic role paralleled by increased locomotor activity both in STD and CAF diet fed rats. The inhibition of feeding could be partially mediated by lowering of hypothalamic POMC and AgRP gene expression levels.


Assuntos
Peso Corporal/efeitos dos fármacos , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Hemoglobinas/farmacologia , Hipotálamo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Hipotálamo/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...