Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277362

RESUMO

Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/genética , Proteínas Relacionadas à Autofagia/genética , Demência Frontotemporal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Mol Biol ; 429(22): 3525-3545, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28988953

RESUMO

Three deubiquitinating enzymes-Rpn11, Usp14, and Uch37-are associated with the proteasome regulatory particle. These enzymes allow proteasomes to remove ubiquitin from substrates before they are translocated into the core particle to be degraded. Although the translocation channel is too narrow for folded proteins, the force of translocation unfolds them mechanically. As translocation proceeds, ubiquitin chains bound to substrate are drawn to the channel's entry port, where they can impede further translocation. Rpn11, situated over the port, can remove these chains without compromising degradation because substrates must be irreversibly committed to degradation before Rpn11 acts. This coupling between deubiquitination and substrate degradation is ensured by the Ins-1 loop of Rpn11, which controls ubiquitin access to its catalytic site. In contrast to Rpn11, Usp14 and Uch37 can rescue substrates from degradation by promoting substrate dissociation from the proteasome prior to the commitment step. Uch37 is unique in being a component of both the proteasome and a second multisubunit assembly, the INO80 complex. However, only recruitment into the proteasome activates Uch37. Recruitment to the proteasome likewise activates Usp14. However, the influence of Usp14 on the proteasome depends on the substrate, due to its marked preference for proteins that carry multiple ubiquitin chains. Usp14 exerts complex control over the proteasome, suppressing proteasome activity even when inactive in deubiquitination. A major challenge for the field will be to elucidate the specificities of Rpn11, Usp14, and Uch37 in greater depth, employing not only model in vitro substrates but also their endogenous targets.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Células Eucarióticas/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Hidrólise , Transporte Proteico , Proteólise
3.
Cell Host Microbe ; 21(3): 356-366, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279346

RESUMO

Human beta1-coronavirus (ß1CoV) OC43 emerged relatively recently through a single zoonotic introduction. Like related animal ß1CoVs, OC43 uses 9-O-acetylated sialic acid as receptor determinant. ß1CoV receptor binding is typically controlled by attachment/fusion spike protein S and receptor-binding/receptor-destroying hemagglutinin-esterase protein HE. We show that following OC43's introduction into humans, HE-mediated receptor binding was selected against and ultimately lost through progressive accumulation of mutations in the HE lectin domain. Consequently, virion-associated receptor-destroying activity toward multivalent glycoconjugates was reduced and altered such that some clustered receptor populations are no longer cleaved. Loss of HE lectin function was also observed for another respiratory human coronavirus, HKU1. This thus appears to be an adaptation to the sialoglycome of the human respiratory tract and for replication in human airways. The findings suggest that the dynamics of virion-glycan interactions contribute to host tropism. Our observations are relevant also to other human respiratory viruses of zoonotic origin, particularly influenza A virus.


Assuntos
Adaptação Biológica , Coronavirus Humano OC43/genética , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Lectinas/genética , Lectinas/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Ligação Viral , Animais , Coronavirus Humano OC43/fisiologia , Humanos , Mutação , Ligação Proteica , Receptores Virais/metabolismo
4.
Nat Commun ; 7: 10963, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26957043

RESUMO

When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼ 200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells.


Assuntos
Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise , Ubiquitina/metabolismo , Linhagem Celular , Humanos , Hidrólise , Mutação , Complexo de Endopeptidases do Proteassoma/química , Estrutura Terciária de Proteína , Proteínas/genética
5.
Science ; 351(6275)2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26912900

RESUMO

Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Redes e Vias Metabólicas , Modelos Moleculares , Mutação , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
7.
Cell Rep ; 11(12): 1966-78, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26095364

RESUMO

Sialic acids (Sias), 9-carbon-backbone sugars, are among the most complex and versatile molecules of life. As terminal residues of glycans on proteins and lipids, Sias are key elements of glycotopes of both cellular and microbial lectins and thus act as important molecular tags in cell recognition and signaling events. Their functions in such interactions can be regulated by post-synthetic modifications, the most common of which is differential Sia-O-acetylation (O-Ac-Sias). The biology of O-Ac-Sias remains mostly unexplored, largely because of limitations associated with their specific in situ detection. Here, we show that dual-function hemagglutinin-esterase envelope proteins of nidoviruses distinguish between a variety of closely related O-Ac-Sias. By using soluble forms of hemagglutinin-esterases as lectins and sialate-O-acetylesterases, we demonstrate differential expression of distinct O-Ac-sialoglycan populations in an organ-, tissue- and cell-specific fashion. Our findings indicate that programmed Sia-O-acetylation/de-O-acetylation may be critical to key aspects of cell development, homeostasis, and/or function.


Assuntos
Acetilesterase/biossíntese , Hemaglutininas Virais/genética , Ácido N-Acetilneuramínico/genética , Ácidos Siálicos/genética , Proteínas Virais de Fusão/genética , Acetilação , Acetilesterase/genética , Animais , Regulação da Expressão Gênica , Genoma , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Humanos , Lipídeos/química , Lipídeos/genética , Mamíferos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Nidovirales/química , Proteínas/química , Proteínas/genética , Ácidos Siálicos/química , Especificidade da Espécie , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
9.
PLoS One ; 6(8): e22645, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857942

RESUMO

Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4) M(-1) s(-1). SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death.


Assuntos
Antígenos de Neoplasias/metabolismo , Granzimas/metabolismo , Espaço Intracelular/enzimologia , Serpinas/metabolismo , Antígenos de Neoplasias/genética , Morte Celular/imunologia , Citotoxicidade Imunológica , Granzimas/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Células Jurkat , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Cinética , Mutação , Ligação Proteica , Proteínas Recombinantes/metabolismo , Serpinas/genética , Especificidade por Substrato , Transfecção
10.
Biochem J ; 437(3): 431-42, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21564021

RESUMO

Cytotoxic lymphocyte protease GrM (granzyme M) is a potent inducer of tumour cell death and a key regulator of inflammation. Although hGrM (human GrM) and mGrM (mouse GrM) display extensive sequence homology, the substrate specificity of mGrM remains unknown. In the present study, we show that hGrM and mGrM have diverged during evolution. Positional scanning libraries of tetrapeptide substrates revealed that mGrM is preferred to cleave after a methionine residue, whereas hGrM clearly favours a leucine residue at the P1 position. The kinetic optimal non-prime subsites of both granzymes were also distinct. Gel-based and complementary positional proteomics showed that hGrM and mGrM have a partially overlapping set of natural substrates and a diverged prime and non-prime consensus cleavage motif with leucine and methionine residues being major P1 determinants. Consistent with positional scanning libraries of tetrapeptide substrates, P1 methionine was more frequently used by mGrM as compared with hGrM. Both hGrM and mGrM cleaved α-tubulin with similar kinetics. Strikingly, neither hGrM nor mGrM hydrolysed mouse NPM (nucleophosmin), whereas human NPM was hydrolysed efficiently by GrM from both species. Replacement of the putative P1'-P2' residues in mouse NPM with the corresponding residues of human NPM restored cleavage of mouse NPM by both granzymes. This further demonstrates the importance of prime sites as structural determinants for GrM substrate specificity. GrM from both species efficiently triggered apoptosis in human but not in mouse tumour cells. These results indicate that hGrM and mGrM not only exhibit divergent specificities but also trigger species-specific functions.


Assuntos
Variação Genética , Granzimas/metabolismo , Sequência de Aminoácidos , Animais , Morte Celular , Linhagem Celular , Regulação da Expressão Gênica , Granzimas/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Nucleofosmina , Conformação Proteica , Especificidade da Espécie , Especificidade por Substrato , Tubulina (Proteína)/metabolismo
11.
Expert Rev Proteomics ; 7(3): 347-59, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20536307

RESUMO

Proteases are a family of proteolytically active enzymes whose dysfunction is implicated in a wide variety of human diseases. Although an estimated 2% of the human genome encodes for proteases, only a small fraction of these enzymes have well-characterized functions. Identification of the specificity and natural substrates of proteases in complex biological samples is challenging, but proteomic screens for proteases are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, fluorescent 2D difference gel electrophoresis with mass spectrometry, differential isotope labeling in combination with mass spectrometry, quantitative degradomics analysis of proteolytically generated neo-N-termini, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify protease specificity, cleavage sites and natural substrates with a particular focus on the cytotoxic lymphocyte granule serine proteases granzymes.


Assuntos
Granzimas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Animais , Humanos , Biblioteca de Peptídeos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...