Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(3): 2815-2825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38696039

RESUMO

Integrated production systems have been proposed as alternative to sustainable land use. However, information regarding bacterial community structure and diversity in soils of integrated Crop-Livestock-Forest systems remains unknown. We hypothesize that these integrated production systems, with their ecological intensification, can modulate the soil bacterial communities. However, Yet, it remains unclear whether the modulation of bacterial biodiversity is solely attributable to the complexity of root exudates or if seasonal climatic events also play a contributory role. The objective of this study is to evaluate the impact of monoculture and integrated production systems on bacterial soil communities in the Amazon Biome, Brazil. Three monoculture systems, each with a single crop over time and space (Eucalyptus (E), Crop Soybean (C), Pasture (P)), and three integrated systems with multiple crops over time and space (ECI, PI, ECPI) were evaluated, along with a Native forest serving as a reference area. Soil samples were collected at a depth of 0-10 cm during both the wet and dry seasons. Bacterial composition was determined using Illumina high-throughput sequencing of the 16 S rRNA gene. The sequencing results revealed the highest abundance classified under the phyla Firmicutes, Actinobacteria, and Proteobacteria. The Firmicutes correlated with the Crop in the rainy period and in the dry only ECPI and Forest. For five classes corresponding to the three phyla, the Crop stood out with the greatest fluctuations in their relative abundance compared to other production systems. In cluster analysis by genus during the rainy season, only Forest and ECPI showed no similarity with the other production systems. However, in the dry season, both were grouped with Forest and EPI. Therefore, the bacterial community in integrated systems proved to be sensitive to management practices, even with only two years of use. ECPI demonstrated the greatest similarity in bacterial structure to the Native forest, despite just two years of experimental deployment. Crop exhibited fluctuations in relative abundance in both seasons, indicating an unsustainable production system with changes in soil microbial composition. These findings support our hypothesis that integrated production systems and their ecological intensification, as exemplified by ECPI, can indeed modulate soil bacterial communities.


Assuntos
Bactérias , Biodiversidade , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Brasil , Produção Agrícola/métodos , Produtos Agrícolas/microbiologia , Florestas , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
2.
Environ Sci Pollut Res Int ; 25(30): 30410-30424, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30159846

RESUMO

Due to their renewable and sustainable nature, biodiesel blends boost studies predicting their stability during storage. Besides chemical degradation, biodiesel is more susceptible to biodegradation due to its raw composition. The aim of this work was to evaluate the deteriogenic potential (growth and degradation) of Pseudallescheria boydii and Meyerozyma guilliermondii in degrading pure diesel (B0), pure biodiesel (B100), and a B10 blend in mineral medium during storage. The biodeterioration susceptibility at different fuel ratios and in BH minimal mineral medium were evaluated. The biomass measurements of P. boydii during 45 days indicated higher biomass production in the B10 blend. The growth curve of M. guilliermondii showed similar growth in B10 and B100. Although there was no significant production of biosurfactant, lipase production was detected in the tributyrin agar medium of both microorganisms. The main compounds identified in the aqueous phase by GC-MS were alcohols, esters, acids, sulfur, ketones, and phenols. The results showed that P. boydii grew at the expense of fuels, degrading biodiesel esters, and diesel hydrocarbons. M. guilliermondii grew in B100 and B10; however, degradation was not detected.


Assuntos
Ascomicetos/fisiologia , Biocombustíveis/microbiologia , Gasolina/microbiologia , Biomassa , Brasil , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA