Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Reprod Toxicol ; 112: 7-13, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714933

RESUMO

The placenta is a temporary organ that plays critical roles at the maternal-fetal interface. Normal development and function of the placenta is dependent on hormonal signaling pathways that make the placenta a target of endocrine disrupting chemical (EDC) action. Studies showing association between prenatal exposure, hormone disruption, and reproductive damage indicate that EDCs are developmentally toxic and can impact future generations. In this context, new placental models (trophoblast-derived cell lines, organotypic or 3D cell models, and physiologically based kinetic models) have been developed in order to create new approach methodology (NAM) to assess and even prevent such disastrous toxic harm in future generations. With the widespread discouragement of conducting animal studies, it has become irrefutable to develop in vitro models that can serve as a substitute for in vivo models. The goal of this review is to discuss the newest in vitro models to understand the maternal-fetal interface and predict placental development, physiology, and dysfunction generated by failures in molecular hormone control mechanisms, which, consequently, may change epigenetic programming to increase susceptibility to metabolic and other disorders in the offspring. We summarize the latest placental models for developmental toxicology studies, focusing mainly on three-dimensional (3D) culture models.


Assuntos
Desenvolvimento Fetal , Placenta , Animais , Feminino , Desenvolvimento Fetal/fisiologia , Hormônios/metabolismo , Placenta/metabolismo , Placentação , Gravidez , Trofoblastos
2.
ACS Biomater Sci Eng ; 7(8): 3487-3502, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288642

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, SARS-CoV-2, affects tissues from different body systems but mostly the respiratory system, and the damage evoked in the lungs may occasionally result in severe respiratory complications and eventually lead to death. Studies of human respiratory infections have been limited by the scarcity of functional models that mimic in vivo physiology and pathophysiology. In the last decades, organoid models have emerged as potential research tools due to the possibility of reproducing in vivo tissue in culture. Despite being studied for over one year, there is still no effective treatment against COVID-19, and investigations using pulmonary tissue and possible therapeutics are still very limited. Thus, human lung organoids can provide robust support to simulate SARS-CoV-2 infection and replication and aid in a better understanding of their effects in human tissue. The present review describes methodological aspects of different protocols to develop airway and alveoli organoids, which have a promising perspective to further investigate COVID-19.


Assuntos
COVID-19 , Organoides , Humanos , Pulmão , Alvéolos Pulmonares , SARS-CoV-2
3.
PLoS One ; 13(4): e0194847, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641603

RESUMO

Human adipose tissue-derived stem cells (hASCs) have been subjected to extensive investigation because of their self-renewal properties and potential to restore damaged tissues. In the literature, there are several protocols for differentiating hASCs into osteoblasts, but there is no report on the control of cell viability during this process. In this study, we used osteoblasts derived from hASCs of patients undergoing abdominoplasty. The cells were observed at the beginning and end of bone matrix formation, and the expression of proteins involved in this process, including alkaline phosphatase and osteocalcin, was assessed. RANKL, Osterix, Runx2, Collagen3A1, Osteopontin and BSP expression levels were analyzed using real-time PCR, in addition to a quantitative assessment of protein levels of the markers CD45, CD105, STRO-1, and Nanog, using immunofluorescence. Rhodamine (Rho123), cytochrome-c, caspase-3, P-27, cyclin D1, and autophagy cell markers were analyzed by flow cytometry to demonstrate potential cellular activity and the absence of apoptotic and tumor cell processes before and after cell differentiation. The formation of bone matrix, along with calcium nodules, was observed after 16 days of osteoinduction. The gene expression levels of RANKL, Osterix, Runx2, Collagen3A1, Osteopontin, BSP and alkaline phosphatase activity were also elevated after 16 days of osteoinduction, whereas the level of osteocalcin was higher after 21 days of osteoinduction. Our data also showed that the cells had a high mitochondrial membrane potential and a low expression of apoptotic and tumor markers, both before and after differentiation. Cells were viable after the different phases of differentiation. This proposed methodology, using markers to evaluate cell viability, is therefore successful in assessing different phases of stem cell isolation and differentiation.


Assuntos
Tecido Adiposo/citologia , Sobrevivência Celular , Osteoblastos/citologia , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Colágeno Tipo III/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência , Modelos Biológicos , Osteoblastos/metabolismo , Osteopontina/metabolismo , Ligante RANK/metabolismo , Vimentina/metabolismo
4.
PLoS One ; 13(4): e0194847, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15025

RESUMO

Human adipose tissue-derived stem cells (hASCs) have been subjected to extensive investigation because of their self-renewal properties and potential to restore damaged tissues. In the literature, there are several protocols for differentiating hASCs into osteoblasts, but there is no report on the control of cell viability during this process. In this study, we used osteoblasts derived from hASCs of patients undergoing abdominoplasty. The cells were observed at the beginning and end of bone matrix formation, and the expression of proteins involved in this process, including alkaline phosphatase and osteocalcin, was assessed. RANKL, Osterix, Runx2, Collagen3A1, Osteopontin and BSP expression levels were analyzed using real-time PCR, in addition to a quantitative assessment of protein levels of the markers CD45, CD105, STRO-1, and Nanog, using immunofluorescence. Rhodamine (Rho123), cytochrome-c, caspase-3, P-27, cyclin D1, and autophagy cell markers were analyzed by flow cytometry to demonstrate potential cellular activity and the absence of apoptotic and tumor cell processes before and after cell differentiation. The formation of bone matrix, along with calcium nodules, was observed after 16 days of osteoinduction. The gene expression levels of RANKL, Osterix, Runx2, Collagen3A1, Osteopontin, BSP and alkaline phosphatase activity were also elevated after 16 days of osteoinduction, whereas the level of osteocalcin was higher after 21 days of osteoinduction. Our data also showed that the cells had a high mitochondrial membrane potential and a low expression of apoptotic and tumor markers, both before and after differentiation. Cells were viable after the different phases of differentiation. This proposed methodology, using markers to evaluate cell viability, is therefore successful in assessing different phases of stem cell isolation and differentiation.

5.
PLoS One, v. 13, n. 4, e0194847, abr. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2458

RESUMO

Human adipose tissue-derived stem cells (hASCs) have been subjected to extensive investigation because of their self-renewal properties and potential to restore damaged tissues. In the literature, there are several protocols for differentiating hASCs into osteoblasts, but there is no report on the control of cell viability during this process. In this study, we used osteoblasts derived from hASCs of patients undergoing abdominoplasty. The cells were observed at the beginning and end of bone matrix formation, and the expression of proteins involved in this process, including alkaline phosphatase and osteocalcin, was assessed. RANKL, Osterix, Runx2, Collagen3A1, Osteopontin and BSP expression levels were analyzed using real-time PCR, in addition to a quantitative assessment of protein levels of the markers CD45, CD105, STRO-1, and Nanog, using immunofluorescence. Rhodamine (Rho123), cytochrome-c, caspase-3, P-27, cyclin D1, and autophagy cell markers were analyzed by flow cytometry to demonstrate potential cellular activity and the absence of apoptotic and tumor cell processes before and after cell differentiation. The formation of bone matrix, along with calcium nodules, was observed after 16 days of osteoinduction. The gene expression levels of RANKL, Osterix, Runx2, Collagen3A1, Osteopontin, BSP and alkaline phosphatase activity were also elevated after 16 days of osteoinduction, whereas the level of osteocalcin was higher after 21 days of osteoinduction. Our data also showed that the cells had a high mitochondrial membrane potential and a low expression of apoptotic and tumor markers, both before and after differentiation. Cells were viable after the different phases of differentiation. This proposed methodology, using markers to evaluate cell viability, is therefore successful in assessing different phases of stem cell isolation and differentiation.

6.
Arch. endocrinol. metab. (Online) ; 60(6): 582-586, Nov.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-827786

RESUMO

ABSTRACT Objective The current study was aimed at analyzing sarcoplasmic reticulum Ca2+ ATPase (Serca2) and ryanodine receptor type 2 (Ryr2) gene expression in rats subjected to surgery that induced HF and were subsequently treated with T4 using physiological doses. Materials and methods HF was induced in 18 male Wistar rats by clipping the ascending thoracic aorta to generate aortic stenosis (HFS group), while the control group (9-sham) underwent thoracotomy. After 21 weeks, the HFS group was subdivided into two subgroups. One group (9 Wistar rats) with HF received 1.0 µg of T4/100 g of body weight for five consecutive days (HFS/T4); the other group (9 Wistar rats) received isotonic saline solution (HFS/S). The animals were sacrificed after this treatment and examined for signs of HF. Samples from the left ventricles of these animals were analyzed by RT-qPCR for the expression of Serca2 and Ryr2 genes. Results Rats with HF developed euthyroid sick syndrome (ESS) and treatment with T4 restored the T3 values to the Sham level and increased Serca2 and Ryr2 gene expression, thereby demonstrating a possible benefit of T4 treatment for heart function in ESS associated with HF. Conclusion The T4 treatment can potentially normalize the levels of T3 as well elevated Serca2 and Ryr2 gene expression in the myocardium in heart failure rats with euthyroid sick syndrome.


Assuntos
Animais , Masculino , Tiroxina/administração & dosagem , Síndromes do Eutireóideo Doente/tratamento farmacológico , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Estenose da Valva Aórtica/complicações , Tiroxina/uso terapêutico , Tri-Iodotironina/efeitos dos fármacos , Síndromes do Eutireóideo Doente/complicações , Síndromes do Eutireóideo Doente/genética , RNA Mensageiro/metabolismo , Expressão Gênica/efeitos dos fármacos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Modelos Animais , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Insuficiência Cardíaca/complicações
7.
Arch Endocrinol Metab ; 60(6): 582-586, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27737323

RESUMO

OBJECTIVE: The current study was aimed at analyzing sarcoplasmic reticulum Ca2+ ATPase (Serca2) and ryanodine receptor type 2 (Ryr2) gene expression in rats subjected to surgery that induced HF and were subsequently treated with T4 using physiological doses. MATERIALS AND METHODS: HF was induced in 18 male Wistar rats by clipping the ascending thoracic aorta to generate aortic stenosis (HFS group), while the control group (9-sham) underwent thoracotomy. After 21 weeks, the HFS group was subdivided into two subgroups. One group (9 Wistar rats) with HF received 1.0 µg of T4/100 g of body weight for five consecutive days (HFS/T4); the other group (9 Wistar rats) received isotonic saline solution (HFS/S). The animals were sacrificed after this treatment and examined for signs of HF. Samples from the left ventricles of these animals were analyzed by RT-qPCR for the expression of Serca2 and Ryr2 genes. RESULTS: Rats with HF developed euthyroid sick syndrome (ESS) and treatment with T4 restored the T3 values to the Sham level and increased Serca2 and Ryr2 gene expression, thereby demonstrating a possible benefit of T4 treatment for heart function in ESS associated with HF. CONCLUSION: The T4 treatment can potentially normalize the levels of T3 as well elevated Serca2 and Ryr2 gene expression in the myocardium in heart failure rats with euthyroid sick syndrome.


Assuntos
Síndromes do Eutireóideo Doente/tratamento farmacológico , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , Tiroxina/administração & dosagem , Animais , Estenose da Valva Aórtica/complicações , Síndromes do Eutireóideo Doente/complicações , Síndromes do Eutireóideo Doente/genética , Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/complicações , Masculino , Modelos Animais , RNA Mensageiro/metabolismo , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Tiroxina/uso terapêutico , Tri-Iodotironina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...