Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 242(2): 463-475, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170233

RESUMO

Virtual reality (VR) technology has been widely adopted for several professional and recreational applications. Despite rapid innovation in hardware and software, one of the long prevailing issues for end users of VR is the experience of VR sickness. Females experience stronger VR sickness compared to males, and previous research has linked susceptibility to VR sickness to the menstrual cycle (Munafo et al., Exp Brain Res 235(3):889-901). Here we investigated the female versus male experience in VR sickness while playing an immersive VR game, comparing days of the menstrual cycle when hormones peak: day 15 (ovulation-peak estrogen) and day 22 (mid-luteal phase-peak progesterone). We found that immersion duration was greater in the second session than the first, and discomfort was lessened, suggesting a powerful adaptation with repeated exposure. Due to the estrogen levels changing along with the exposure, there was no clear independent impact of that; note, though, that there was a significant difference between self-report and physiological measures implying that GSR is potentially an unreliable measure of motion sickness. Although prior work found a delay over 2 days between session would not allow adaptation and habituation to reduce VR sickness susceptibility, we found that a week delay has potential success.


Assuntos
Enjoo devido ao Movimento , Realidade Virtual , Humanos , Masculino , Feminino , Caracteres Sexuais , Interface Usuário-Computador , Estrogênios
2.
J Sex Res ; 61(2): 299-312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36795115

RESUMO

Sex differences in mate preferences are ubiquitous, having been evidenced across generations and cultures. Their prevalence and persistence have compellingly placed them in the evolutionarily adaptive context of sexual selection. However, the psycho-biological mechanisms contributing to their generation and maintenance remain poorly understood. As such a mechanism, sexual attraction is assumed to guide interest, desire, and the affinity toward specific partner features. However, whether sexual attraction can indeed explain sex differences in partner preferences has not been explicitly tested. To better understand how sex and sexual attraction shape mate preferences in humans we assessed how partner preferences differed across the spectrum of sexual attraction in a sample of 479 individuals that identified as asexual, gray-sexual, demisexual or allosexual. We further tested whether romantic attraction predicted preference profiles better than sexual attraction. Our results show that sexual attraction accounts for highly replicable sex differences in mate preferences for high social status and financial prospects, conscientiousness, and intelligence; however, it does not account for the enhanced preference for physical attractiveness expressed by men, which persists even in individuals with low sexual attraction. Instead, sex differences in physical attractiveness preference are better explained by the degree of romantic attraction. Furthermore, effects of sexual attraction on sex differences in partner preferences were grounded in current rather than previous experiences of sexual attraction. Taken together, the results support the idea that contemporary sex differences in partner preferences are maintained by several psycho-biological mechanisms that evolved in conjunction, including not only sexual but also romantic attraction.


Assuntos
Caracteres Sexuais , Comportamento Sexual , Humanos , Feminino , Masculino , Parceiros Sexuais
3.
Commun Biol ; 6(1): 636, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311857

RESUMO

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Assuntos
Encéfalo , Fósseis , Filogenia , Arqueologia , Artefatos
4.
Commun Biol ; 6(1): 655, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344566

RESUMO

Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.


Assuntos
Doença de Alzheimer , Animais , Gatos , Cães , Humanos , Camundongos , Envelhecimento , Encéfalo , Animais de Estimação , Placa Amiloide
5.
Front Psychol ; 14: 1043088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034962

RESUMO

We sought to understand how the perception of personal space is influenced by different levels of social density, spatial density, and type of window-view in South Korean and United Kingdom workplaces. We employed virtual reality to simulate shared and single occupancy offices. We obtained personal space estimations using a virtual disc around the participant which could be extended and retracted, inside the simulation, to indicate perceived amount of personal space, and compared this measure to questionnaire-based estimations. We found that in both cultures participants experienced greater perceived personal space (1) when in a sparse rather than dense office and (2) having a view of the city outside the office. However, British, but not Korean, participants had significantly higher personal space estimations in single occupancy offices than in shared offices. These results suggest subtle cross-cultural differences in workplace experience, that could only be investigated using virtual reality.

6.
Prog Brain Res ; 275: 165-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36841568

RESUMO

This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Animais , Doenças Neurodegenerativas/patologia , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Genômica , Mamíferos
7.
Prog Brain Res ; 275: 217-232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36841569

RESUMO

An absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.


Assuntos
Hominidae , Animais , Humanos , Filogenia , Evolução Biológica , Tamanho do Órgão , Fósseis
8.
Cogn Affect Behav Neurosci ; 22(5): 904-951, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35589909

RESUMO

This integrative review rearticulates the notion of human aesthetics by critically appraising the conventional definitions, offerring a new, more comprehensive definition, and identifying the fundamental components associated with it. It intends to advance holistic understanding of the notion by differentiating aesthetic perception from basic perceptual recognition, and by characterizing these concepts from the perspective of information processing in both visual and nonvisual modalities. To this end, we analyze the dissociative nature of information processing in the brain, introducing a novel local-global integrative model that differentiates aesthetic processing from basic perceptual processing. This model builds on the current state of the art in visual aesthetics as well as newer propositions about nonvisual aesthetics. This model comprises two analytic channels: aesthetics-only channel and perception-to-aesthetics channel. The aesthetics-only channel primarily involves restricted local processing for quality or richness (e.g., attractiveness, beauty/prettiness, elegance, sublimeness, catchiness, hedonic value) analysis, whereas the perception-to-aesthetics channel involves global/extended local processing for basic feature analysis, followed by restricted local processing for quality or richness analysis. We contend that aesthetic processing operates independently of basic perceptual processing, but not independently of cognitive processing. We further conjecture that there might be a common faculty, labeled as aesthetic cognition faculty, in the human brain for all sensory aesthetics albeit other parts of the brain can also be activated because of basic sensory processing prior to aesthetic processing, particularly during the operation of the second channel. This generalized model can account not only for simple and pure aesthetic experiences but for partial and complex aesthetic experiences as well.


Assuntos
Beleza , Cognição , Encéfalo , Estética , Humanos , Percepção
9.
Neurosci Biobehav Rev ; 134: 104550, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074313

RESUMO

Research on the origin of vision and vision loss in naturally "blind" animal species can reveal the tasks that vision fulfills and the brain's role in visual experience. Models that incorporate evolutionary history, natural variation in visual ability, and experimental manipulations can help disentangle visual ability at a superficial level from behaviors linked to vision but not solely reliant upon it, and could assist the translation of ophthalmological research in animal models to human treatments. To unravel the similarities between blind individuals and blind species, we review concepts of "blindness" and its behavioral correlates across a range of species. We explore the ancestral emergence of vision in vertebrates, and the loss of vision in blind species with reference to an evolution-based classification scheme. We applied phylogenetic comparative methods to a mammalian tree to explore the evolution of visual acuity using ancestral state estimations. Future research into the natural history of vision loss could help elucidate the function of vision and inspire innovations in how to address vision loss in humans.


Assuntos
História Natural , Transtornos da Visão , Animais , Cegueira , Humanos , Mamíferos , Filogenia , Vertebrados
10.
Arch Sex Behav ; 50(8): 3785-3797, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33851315

RESUMO

Cross-cultural research has repeatedly demonstrated sex differences in the importance of partner characteristics when choosing a mate. Men typically report higher preferences for younger, more physically attractive women, while women typically place more importance on a partner's status and wealth. As the assessment of such partner characteristics often relies on visual cues, this raises the question whether visual experience is necessary for sex-specific mate preferences to develop. To shed more light onto the emergence of sex differences in mate choice, the current study assessed how preferences for attractiveness, resources, and personality factors differ between sighted and blind individuals using an online questionnaire. We further investigate the role of social factors and sensory cue selection in these sex differences. Our sample consisted of 94 sighted and blind participants with different ages of blindness onset: 19 blind/28 sighted males and 19 blind/28 sighted females. Results replicated well-documented findings in the sighted, with men placing more importance on physical attractiveness and women placing more importance on status and resources. However, while physical attractiveness was less important to blind men, blind women considered physical attractiveness as important as sighted women. The importance of a high status and likeable personality was not influenced by sightedness. Blind individuals considered auditory cues more important than visual cues, while sighted males showed the opposite pattern. Further, relationship status and indirect, social influences were related to preferences. Overall, our findings shed light on the availability of visual information for the emergence of sex differences in mate preference.


Assuntos
Sinais (Psicologia) , Comportamento Sexual , Cegueira , Comportamento de Escolha , Feminino , Humanos , Masculino , Personalidade , Caracteres Sexuais
11.
Psychol Neurosci ; 14(3): 298-334, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36937077

RESUMO

Objective: Neuroplasticity enables the brain to establish new crossmodal connections or reorganize old connections which are essential to perceiving a multisensorial world. The intent of this review is to identify and summarize the current developments in neuroplasticity and crossmodal connectivity, and deepen understanding of how crossmodal connectivity develops in the normal, healthy brain, highlighting novel perspectives about the principles that guide this connectivity. Methods: To the above end, a narrative review is carried out. The data documented in prior relevant studies in neuroscience, psychology and other related fields available in a wide range of prominent electronic databases are critically assessed, synthesized, interpreted with qualitative rather than quantitative elements, and linked together to form new propositions and hypotheses about neuroplasticity and crossmodal connectivity. Results: Three major themes are identified. First, it appears that neuroplasticity operates by following eight fundamental principles and crossmodal integration operates by following three principles. Second, two different forms of crossmodal connectivity, namely direct crossmodal connectivity and indirect crossmodal connectivity, are suggested to operate in both unisensory and multisensory perception. Third, three principles possibly guide the development of crossmodal connectivity into adulthood. These are labeled as the principle of innate crossmodality, the principle of evolution-driven 'neuromodular' reorganization and the principle of multimodal experience. These principles are combined to develop a three-factor interaction model of crossmodal connectivity. Conclusions: The hypothesized principles and the proposed model together advance understanding of neuroplasticity, the nature of crossmodal connectivity, and how such connectivity develops in the normal, healthy brain.

12.
Appl Ergon ; 85: 103072, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32174360

RESUMO

Visual-to-auditory sensory substitution devices (SSDs) provide improved access to the visual environment for the visually impaired by converting images into auditory information. Research is lacking on the mechanisms involved in processing data that is perceived through one sensory modality, but directly associated with a source in a different sensory modality. This is important because SSDs that use auditory displays could involve binaural presentation requiring both ear canals, or monaural presentation requiring only one - but which ear would be ideal? SSDs may be similar to reading, as an image (printed word) is converted into sound (when read aloud). Reading, and language more generally, are typically lateralised to the left cerebral hemisphere. Yet, unlike symbolic written language, SSDs convert images to sound based on visuospatial properties, with the right cerebral hemisphere potentially having a role in processing such visuospatial data. Here we investigated whether there is a hemispheric bias in the processing of visual-to-auditory sensory substitution information and whether that varies as a function of experience and visual ability. We assessed the lateralization of auditory processing with two tests: a standard dichotic listening test and a novel dichotic listening test created using the auditory information produced by an SSD, The vOICe. Participants were tested either in the lab or online with the same stimuli. We did not find a hemispheric bias in the processing of visual-to-auditory information in visually impaired, experienced vOICe users. Further, we did not find any difference between visually impaired, experienced vOICe users and sighted novices in the hemispheric lateralization of visual-to-auditory information processing. Although standard dichotic listening is lateralised to the left hemisphere, the auditory processing of images in SSDs is bilateral, possibly due to the increased influence of right hemisphere processing. Auditory SSDs might therefore be equally effective with presentation to either ear if a monaural, rather than binaural, presentation were necessary.


Assuntos
Percepção Auditiva/fisiologia , Auxiliares Sensoriais , Transtornos da Visão/fisiopatologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Testes com Listas de Dissílabos , Feminino , Lateralidade Funcional , Humanos , Idioma , Aprendizagem , Masculino
13.
Proc Biol Sci ; 286(1914): 20191712, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662078

RESUMO

The hippocampus is well known for its roles in spatial navigation and memory, but it is organized into regions that have different connections and functional specializations. Notably, the region CA2 has a role in social and not spatial cognition, as is the case for the regions CA1 and CA3 that surround it. Here, we investigated the evolution of the hippocampus in terms of its size and organization in relation to the evolution of social and ecological variables in primates, namely home range, diet and different measures of group size. We found that the volumes within the whole cornu ammonis coevolve with group size, while only the volume of CA1 and subiculum can also be predicted by home range. On the other hand, diet, expressed as a shift from folivory towards frugivory, was shown to not be related to hippocampal volume. Interestingly, CA2 was shown to exhibit phylogenetic signal only against certain measures of group size, but not with ecological factors. We also found that sex differences in the hippocampus are related to body size sex dimorphism. This is in line with reports of sex differences in hippocampal volume in non-primates that are related to social structure and sex differences in behaviour. Our findings support the notion that in primates, the hippocampus is a mosaic structure evolving in line with social pressures, where certain subsections evolve in line with spatial ability too.


Assuntos
Dieta , Hipocampo/anatomia & histologia , Primatas/fisiologia , Animais , Primatas/anatomia & histologia , Caracteres Sexuais , Lobo Temporal
14.
Sci Rep ; 7(1): 5398, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710346

RESUMO

Humans have a bias for turning to the right in a number of settings. Here we document a bias in head-turning to the right in adult humans, as tested in the act of kissing. We investigated head-turning bias in both kiss initiators and kiss recipients for lip kissing, and took into consideration differences due to sex and handedness, in 48 Bangladeshi heterosexual married couples. We report a significant male bias in the initiation of kissing and a significant bias in head-turning to the right in both kiss initiators and kiss recipients, with a tendency among kiss recipients to match their partners' head-turning direction. These interesting outcomes are explained by the influences of societal learning or cultural norms and the potential neurophysiological underpinnings which together offer novel insights about the mechanisms underlying behavioral laterality in humans.


Assuntos
Lateralidade Funcional/fisiologia , Comportamento Sexual/fisiologia , Adulto , Viés , Feminino , Humanos , Masculino , Movimento/fisiologia , Fatores Sexuais
15.
Open Biol ; 6(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27707894

RESUMO

Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell-cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages.


Assuntos
Quimiotaxia/genética , Mamíferos/genética , Família Multigênica , Neocórtex/anatomia & histologia , Animais , Comunicação Celular , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Genômica , Humanos , Mamíferos/anatomia & histologia , Neocórtex/crescimento & desenvolvimento , Tamanho do Órgão , Filogenia
17.
Front Psychol ; 7: 64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903893

RESUMO

Knowing who we are, and where we are, are two fundamental aspects of our physical and mental experience. Although the domains of spatial and social cognition are often studied independently, a few recent areas of scholarship have explored the interactions of place and self. This fits in with increasing evidence for embodied theories of cognition, where mental processes are grounded in action and perception. Who we are might be integrated with where we are, and impact how we move through space. Individuals vary in personality, navigational strategies, and numerous cognitive and social competencies. Here we review the relation between social and spatial spheres of existence in the realms of philosophical considerations, neural and psychological representations, and evolutionary context, and how we might use the built environment to suit who we are, or how it creates who we are. In particular we investigate how two spatial reference frames, egocentric and allocentric, might transcend into the social realm. We then speculate on how environments may interact with spatial cognition. Finally, we suggest how a framework encompassing spatial and social cognition might be taken in consideration by architects and urban planners.

18.
Restor Neurol Neurosci ; 34(1): 29-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26599473

RESUMO

Vision is the dominant sense for perception-for-action in humans and other higher primates. Advances in sight restoration now utilize the other intact senses to provide information that is normally sensed visually through sensory substitution to replace missing visual information. Sensory substitution devices translate visual information from a sensor, such as a camera or ultrasound device, into a format that the auditory or tactile systems can detect and process, so the visually impaired can see through hearing or touch. Online control of action is essential for many daily tasks such as pointing, grasping and navigating, and adapting to a sensory substitution device successfully requires extensive learning. Here we review the research on sensory substitution for vision restoration in the context of providing the means of online control for action in the blind or blindfolded. It appears that the use of sensory substitution devices utilizes the neural visual system; this suggests the hypothesis that sensory substitution draws on the same underlying mechanisms as unimpaired visual control of action. Here we review the current state of the art for sensory substitution approaches to object recognition, localization, and navigation, and the potential these approaches have for revealing a metamodal behavioral and neural basis for the online control of action.


Assuntos
Encéfalo/fisiologia , Atividade Motora/fisiologia , Percepção Visual/fisiologia , Cegueira/fisiopatologia , Encéfalo/fisiopatologia , Humanos
19.
Front Psychol ; 6: 1381, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441756

RESUMO

Through advances in production and treatment technologies, transparent glass has become an increasingly versatile material and a global hallmark of modern architecture. In the shape of invisible barriers, it defines spaces while simultaneously shaping their lighting, noise, and climate conditions. Despite these unique architectural qualities, little is known regarding the human experience with glass barriers. Is a material that has been described as being simultaneously there and not there from an architectural perspective, actually there and/or not there from perceptual, behavioral, and social points of view? In this article, we review systematic observations and experimental studies that explore the impact of transparent barriers on human cognition and action. In doing so, the importance of empirical and multidisciplinary approaches to inform the use of glass in contemporary architecture is highlighted and key questions for future inquiry are identified.

20.
Front Neuroanat ; 8: 51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009469

RESUMO

An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...