Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 376: 83-93, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129947

RESUMO

A new molecule, LQFM048, originally designed through molecular hybridization using green chemistry approach, is in development as a photoprotective agent. Eye irritation, skin toxicity and genotoxicity evaluations are mandatory for predicting health risks. In this context, the purpose of this study was to investigate the eye irritation potential of LQFM048 by combining Short Time Exposure (STE), Bovine Corneal Opacity and Permeability (BCOP) associated with corneal histomorphometry and Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Additionally, skin toxicity was evaluated by interleukin-18 production in the HaCaT keratinocyte, Local Lymph Node Assay (LLNA:BrdU-ELISA) method, 3T3 Neutral red uptake (NRU) assay and in vivo phototoxicity test. Genotoxic potential of LQFM048 was also analyzed by cytokinesis-block micronucleus assay (MNvit test-cytoB) in HepG2 cells. Our results showed that LQFM048 did not induce eye irritation and it was classified as UN GHS No Category for both STE and BCOP assays and non-irritating for HET-CAM test. LQFM048 showed non-potential skin sensitization with stimulation index (SI=0.7) in the LLNA:BrdU-ELISA method. Corroborating in vivo tests, it did not promote significant cytotoxicity in HaCaT cells and it showed similar levels of IL-18 when compared to control. Furthermore, LQFM048 induced non-phototoxic potential with photo-irritation factor (PIF) and mean photo effect (MPE) of 1 and -0.138, respectively, for 3T3 cells. Similarly, it was not phototoxic for in vivo testing with or without exposure to UVA, showing SI values of 1 and 1.2, respectively. The micronucleus test showed that LQFM048 was not genotoxic, under the conditions tested.In conclusion, LQFM048, a heterocyclic compound obtained through an environmentally acceptable simple synthetic route, seems to be safe for human use, especially for the development of a new sunscreen product, since it is neither an eye irritant, nor a contact allergen, nor mutagenic and nor phototoxic.


Assuntos
Córnea/efeitos dos fármacos , Irritantes/toxicidade , Pele/efeitos dos fármacos , Protetores Solares/toxicidade , Células 3T3 , Animais , Bovinos , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Galinhas , Córnea/fisiologia , Córnea/efeitos da radiação , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células Hep G2 , Humanos , Irritantes/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Testes de Mutagenicidade/métodos , Distribuição Aleatória , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
2.
Pharm Res ; 31(5): 1106-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24170281

RESUMO

PURPOSE: The purpose of this work was the development of a multicompartimental nanocarrier for the simultaneous encapsulation of paclitaxel (PTX) and genistein (GEN), associating antiangiogenic and cytotoxic properties in order to potentiate antitumoral activity. METHOD: Polymeric nanocapsules containing PTX were obtained by interfacial deposition of preformed polymer and coated with a phospholipid bilayer entrapping GEN. Physical-chemical and morphological characteristics were characterized, including size and size distribution, drug entrapment efficiency and drug release profile. In vivo studies were performed in EAT bearing Swiss mice. RESULTS: Entrapment efficiency for both drugs in the nanoparticles was approximately 98%. Average particle diameter was 150 nm with a monomodal distribution. In vitro assays showed distinct temporal drug release profiles for each drug. The dose of 0.2 mg/kg/day of PTX resulted in 11% tumor inhibition, however the association of 12 mg/kg/day of GEN promoted 44% tumor inhibition and a 58% decrease in VEGF levels. CONCLUSIONS: Nanoparticles containing GEN and PTX with a temporal pattern of drug release indicated that the combined effect of cytotoxic and antiangiogenic drugs present in the formulation contributed to the overall enhanced antitumor activity of the nanomedicine.


Assuntos
Antineoplásicos/uso terapêutico , Vasos Sanguíneos/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias Experimentais/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Cromatografia Líquida de Alta Pressão , Genisteína/administração & dosagem , Genisteína/uso terapêutico , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Neoplasias Experimentais/patologia , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...