Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 41(8): 1252-1262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787620

RESUMO

Insulin (INS) resistance is often found in cancer-bearing, but its correlation with cachexia development is not completely established. This study investigated the temporal sequence of the development of INS resistance and cachexia to establish the relationship between these factors in Walker-256 tumor-bearing rats (TB rats). INS hepatic sensitivity and INS resistance-inducing factors, such as free fatty acids (FFA) and tumor necrosis factor-α (TNF-α), were also evaluated. Studies were carried out on Days 2, 5, 8, and/or 12 after inoculation of tumor cells in rats. The peripheral INS sensitivity was assessed by the INS tolerance test and the INS hepatic sensitivity in in situ liver perfusion. TB rats with 5, 8, and 12 days of tumor, but not 2 days, showed decreased peripheral INS sensitivity (INS resistance), retroperitoneal fat, and body weight, compared to healthy rats, which were more pronounced on Day 12. Gastrocnemius muscle wasting was observed only on Day 12 of tumor. The peripheral INS resistance was significantly correlated (r = -.81) with weight loss. Liver INS sensitivity of TB rats with 2 and 5 days of tumor was unchanged, compared to healthy rats. TB rats with 12 days of tumor showed increased plasma FFA and increased TNF-α in retroperitoneal fat and liver, but not in the gastrocnemius, compared to healthy rats. In conclusion, peripheral INS resistance is early, starts along with fat and weight loss and before muscle wasting, progressive, and correlated with cachexia, suggesting that it may play an important role in the pathogenesis of the cachectic process in TB rats. Therefore, early correction of INS resistance may be a therapeutic approach to prevent and treat cancer cachexia.


Assuntos
Resistência à Insulina , Neoplasias , Ratos , Animais , Caquexia/etiologia , Caquexia/patologia , Insulina , Fator de Necrose Tumoral alfa , Ratos Wistar , Redução de Peso , Neoplasias/complicações
2.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37856216

RESUMO

The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.


Assuntos
Adipócitos Marrons , Cálcio , Receptores Acoplados a Proteínas G , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Termogênese/genética , Receptores Acoplados a Proteínas G/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia
3.
Mol Metab ; 78: 101812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777009

RESUMO

OBJECTIVE: Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS: To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS: Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION: These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.


Assuntos
Resistência à Insulina , Ácido N-Acetilneuramínico , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Glucagon , Músculo Esquelético/metabolismo , Fígado/metabolismo , Glucose , Insulina , Homeostase , Polissacarídeos
4.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066975

RESUMO

The molecular mechanisms underlying obesity-induced increases in ß cell mass and the resulting ß cell dysfunction need to be elucidated further. Our study revealed that GPR92, expressed in islet macrophages, is modulated by dietary interventions in metabolic tissues. Therefore, we aimed to define the role of GPR92 in islet inflammation by using a high-fat diet-induced (HFD-induced) obese mouse model. GPR92-KO mice exhibited glucose intolerance and reduced insulin levels - despite the enlarged pancreatic islets - as well as increased islet macrophage content and inflammation level compared with WT mice. These results indicate that the lack of GPR92 in islet macrophages can cause ß cell dysfunction, leading to disrupted glucose homeostasis. Alternatively, stimulation with the GPR92 agonist farnesyl pyrophosphate results in the inhibition of HFD-induced islet inflammation and increased insulin secretion in WT mice, but not in GPR92-KO mice. Thus, our study suggests that GPR92 can be a potential target to alleviate ß cell dysfunction via the inhibition of islet inflammation associated with the progression of diabetes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Ilhotas Pancreáticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Macrófagos/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
5.
Diabetes ; 71(12): 2496-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880782

RESUMO

Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adipocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveolar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Furthermore, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interestingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of negative phenotypes to other organs by EVs.


Assuntos
Caveolina 1 , Vesículas Extracelulares , Insulina , Animais , Camundongos , Adipócitos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Dieta Hiperlipídica , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Camundongos Knockout
6.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641380

RESUMO

Endothelial dysfunction and inflammation are recognised factors in the development of atherosclerosis. Evidence suggests that intake of industrial trans fatty acids (TFAs) promotes endothelial dysfunction, while ruminant TFAs may have the opposite effect. The aim of this study was to compare the effects of elaidic acid (EA (18:1n-9t); an industrially produced TFA) and trans vaccenic acid (TVA (18:1n-7t); a natural TFA found in ruminant milk and meat) on inflammatory responses of endothelial cells (ECs). ECs (EA.hy926 cells) were cultured under standard conditions and exposed to TFAs (1 to 50 µM) for 48 h. Then, the cells were cultured for a further 6 or 24 h with tumour necrosis factor alpha (TNF-α, 1 ng/mL) as an inflammatory stimulant. ECs remained viable after treatments. TFAs were incorporated into ECs in a dose-dependent manner. Preincubation with EA (50 µM) increased production of MCP-1, RANTES, and IL-8 in response to TNF-α, while preincubation with TVA (1 µM) decreased production of ICAM-1 and RANTES in response to TNF-α. Preincubation with EA (50 µM) upregulated toll-like receptor 4 and cyclooxygenase 2 gene expression in response to TNF-α. In contrast, preincubation with TVA (1 µM) downregulated TNF-α induced nuclear factor kappa B subunit 1 gene expression. Preincubation of ECs with EA (50 µM) increased THP-1 monocyte adhesion. In contrast, preincubation of ECs with TVA (1 µM) reduced THP-1 monocyte adhesion, while preincubation of ECs with TVA (50 µM) decreased the level of surface expression of ICAM-1 seen following TNF-α stimulation. The results suggest that TVA has some anti-inflammatory properties, while EA enhances the response to an inflammatory stimulus. These findings suggest differential effects induced by the TFAs tested, fitting with the idea that industrial TFAs and ruminant TFAs can have different and perhaps opposing biological actions in an inflammatory context.


Assuntos
Anti-Inflamatórios/farmacologia , Radioisótopos de Carbono/análise , Endotélio Vascular/imunologia , Inflamação/imunologia , Ácidos Oleicos/farmacologia , Ruminantes/metabolismo , Ácidos Graxos trans/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32058033

RESUMO

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) lower risk of cardiovascular disease. The primary source of EPA and DHA is fatty fish. Plant-derived alpha linolenic acid (ALA) and stearidonic acid (SDA) could provide sustainable land-based alternatives, but their functionality is underexplored. Omega-3 fatty acids (n-3 FAs) may influence atherogenic processes through changing endothelial cell (EC) function and lowering inflammation. This study compared effects of marine- and plant-derived n-3 FAs on EC inflammatory responses. EA.hy926 cells were exposed to ALA, SDA, EPA or DHA prior to stimulation with tumor necrosis factor (TNF)-α. All FAs were shown to be incorporated into ECs in a dose-dependent manner. SDA (50 µM) decreased both production and cell-surface expression of intercellular adhesion molecule (ICAM)-1; however EPA and DHA resulted in greater reduction of ICAM-1 production and expression. EPA and DHA also significantly lowered production of monocyte chemoattractant protein 1, interleukin (IL)-6 and IL-8. ALA, SDA and DHA (50 µM) all reduced adhesion of THP-1 monocytes to EA.hy926 cells. DHA significantly decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)p105 gene expression and phosphorylated NFκBp65 protein. Both EPA and DHA (50 µM) significantly decreased cyclooxygenase (COX)-2 protein. Thus, both marine-derived n-3 FAs, particularly DHA, had potent anti-inflammatory effects in this EC model. Of the plant-derived n-3 FAs, SDA showed the greatest inhibition of inflammation. Although neither ALA nor SDA reproduced the anti-inflammatory effects of EPA and DHA in this model, there is some potential for SDA to be a sustainable anti-inflammatory alternative to the marine n-3 FAs.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Linhagem Celular , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-8/imunologia , Interleucina-8/metabolismo , Subunidade p50 de NF-kappa B/imunologia , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo
8.
Mol Nutr Food Res ; 62(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28980402

RESUMO

Although dietary fatty acids can modulate metabolic and immune responses, the effects of palmitoleic acid (16:1n-7) remain unclear. Since this monounsaturated fatty acid is described as a lipokine, studies with cell culture and rodent models have suggested it enhances whole body insulin sensitivity, stimulates insulin secretion by ß cells, increases hepatic fatty acid oxidation, improves the blood lipid profile, and alters macrophage differentiation. However, human studies report elevated blood levels of palmitoleic acid in people with obesity and metabolic syndrome. These findings might be reflection of the level or activity of stearoyl-CoA desaturase-1, which synthesizes palmitoleate and is enhanced in liver and adipose tissue of obese patients. The aim of this review is to describe the immune-metabolic effects of palmitoleic acid observed in cell culture, animal models, and humans to answer the question of whether palmitoleic acid is a plausible nonpharmacological strategy to prevent, control, or ameliorate chronic metabolic and inflammatory disorders. Despite the beneficial effects observed in cell culture and in animal studies, there are insufficient human intervention studies to fully understand the physiological effects of palmitoleic acid. Therefore, more human-based research is needed to identify whether palmitoleic acid meets the promising therapeutic potential suggested by the preclinical research.


Assuntos
Ácidos Graxos Monoinsaturados/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Acetiltransferases/fisiologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , LDL-Colesterol/sangue , Elongases de Ácidos Graxos , Humanos , Resistência à Insulina , Síndrome Metabólica/prevenção & controle , Obesidade/prevenção & controle , Estearoil-CoA Dessaturase/fisiologia
9.
J Cell Physiol ; 232(8): 2168-2177, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27925195

RESUMO

BACKGROUND: Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. OBJECTIVE: To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. METHODS: C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. RESULTS: Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. CONCLUSIONS: In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado/efeitos dos fármacos , PPAR alfa/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Predisposição Genética para Doença , Glucoquinase/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , Fenótipo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo
10.
J Strength Cond Res ; 29(9): 2538-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26308831

RESUMO

The aim of this study was to analyze physiological responses in Brazilian jiu-jitsu athletes during simulated competition. To this end, 10 athletes (age: 28 ± 4 years, body mass: 81.8 ± 7.4 kg, body fat: 13.0 ± 4.8%, systematic practice: 11 ± 4 years) were analyzed in simulated competition (4 matches of 10 minutes). Blood samples were taken to assess energy demand, hormonal responses, and cell damage. Additionally, the heart rate variability (HRV) response was analyzed. The main results show that in simulated competition, during the last matches, athletes had lower lactate (p < 0.001), epinephrine (p < 0.001), norepinephrine (p < 0.001), and insulin (p = 0.002) concentrations. Increases observed in creatine kinase (p < 0.001), aspartate aminotransferase (p < 0.001), alanine aminotransferase (p = 0.007), and creatinine (p < 0.001) seen, especially, in the last matches are indicative of possible cell damage. The HRV reflected a decrease in the RR medium (average of the normal R-R intervals) (p = 0.001) during the competition. Thus, it is concluded that successive matches from competition generate a gradual decrease of adrenergic and glycolytic activities, which is accompanied by a gradual increase in cell damage markers and decrease in the RR medium of the HRV.


Assuntos
Comportamento Competitivo/fisiologia , Artes Marciais/fisiologia , Adolescente , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Brasil , Creatina Quinase/sangue , Frequência Cardíaca/fisiologia , Humanos , Hidrocortisona/sangue , Ácido Láctico/sangue , Masculino , Testosterona/sangue , Adulto Jovem
11.
Pharmacol Rep ; 65(4): 960-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24145090

RESUMO

BACKGROUND: The purpose of this study was to investigate the effect of infliximab, an anti-tumor necrosis factor α (TNFα) monoclonal antibody, on the progression of cachexia and several metabolic parameters affected by the Walker-256 tumor in rats. METHODS: Infliximab (0.5 mg/kg) was ip administered, twice a day, beginning at the day in which the Walker-256 tumor cells were inoculated. After 12 days of treatment, the tumor growth, some parameters of cachexia/anorexia, the blood levels of triacylglycerol, glucose, lactate and urea, the peripheral response to insulin and the hepatic glycolysis and gluconeogenesis were investigated. The peripheral response to insulin was evaluated by the insulin tolerance test and the glycolysis and gluconeogenesis in isolated perfused liver. RESULTS: The treatment with infliximab did not alter the growth of the Walker-256 tumor, but attenuated (p < 0.05) the reduction of body weight and prevented (p < 0.05) the loss of retroperitoneal adipose tissue induced by the tumor. Moreover, treatment with infliximab tended to minimize the loss of gastrocnemius muscle, the reduction in food intake, the peripheral response to insulin and the liver gluconeogenesis from alanine, as well as the increased blood triacylglycerol, caused by the tumor. In contrast, treatment with infliximab did not attenuate the reduction in hepatic glycolysis and glycemia, nor did it minimize the rise in blood levels of lactate and urea induced by the tumor. CONCLUSION: The treatment with infliximab ameliorated some changes associated with cachexia, such as the reduction of adipose tissue and body weight, suggesting that TNFα plays a significant role in mediating these changes induced by the tumor. In addition, infliximab tended to improve or had no effect on other metabolic parameters affected by the Walker-256 tumor, suggesting that other mediators or tumor-related events are involved in these disorders.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Anticorpos Monoclonais/farmacologia , Caquexia/tratamento farmacológico , Carcinoma 256 de Walker/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Glicemia/efeitos dos fármacos , Caquexia/sangue , Caquexia/complicações , Carcinoma 256 de Walker/sangue , Carcinoma 256 de Walker/complicações , Ingestão de Alimentos/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Infliximab , Ácido Láctico/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Triglicerídeos/sangue , Ureia/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...