Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 11: 138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567003

RESUMO

In most mammalian brains, the subventricular zone (SVZ) is a germinative layer that maintains neurogenic activity throughout adulthood. Neuronal precursors arising from this region migrate through the rostral migratory stream (RMS) and reach the olfactory bulbs where they differentiate and integrate into the local circuitry. Recently, studies have shown that heat shock proteins have an important role in cancer cell migration and blocking Hsp90 function was shown to hinder cell migration in the developing cerebellum. In this work, we hypothesize that chaperone complexes may have an important function regulating migration of neuronal precursors from the subventricular zone. Proteins from the Hsp90 complex are present in the postnatal SVZ as well as in the RMS. Using an in vitro SVZ explant model, we have demonstrated the expression of Hsp90 and Hop/STI1 by migrating neuroblasts. Treatment with antibodies against Hsp90 and co-chaperone Hop/STI1, as well as Hsp90 and Hsp70 inhibitors hinder neuroblast chain migration. Time-lapse videomicroscopy analysis revealed that cell motility and average migratory speed was decreased after exposure to both antibodies and inhibitors. Antibodies recognizing Hsp90, Hsp70, and Hop/STI1 were found bound to the membranes of cells from primary SVZ cultures and biotinylation assays demonstrated that Hsp70 and Hop/STI1 could be found on the external leaflet of neuroblast membranes. The latter could also be detected in conditioned medium samples obtained from cultivated SVZ cells. Our results suggest that chaperones Hsp90, Hsp70, and co-chaperone Hop/STI1, components of the Hsp90 complex, regulate SVZ neuroblast migration in a concerted manner through an extracellular mechanism.

2.
Mol Neurobiol ; 54(3): 2090-2106, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26924316

RESUMO

Evidence suggests that idiopathic Parkinson's disease (PD) is the consequence of a neurodevelopmental disruption, rather than strictly a consequence of aging. Thus, we hypothesized that maternal supplement of omega-3 polyunsaturated fatty acids (ω-3 PUFA) may be associated with neuroprotection mechanisms in a self-sustaining cycle of neuroinflammation and neurodegeneration in lipopolysaccharide (LPS)-model of PD. To test this hypothesis, behavioral and neurochemical assay were performed in prenatally LPS-exposed offspring at postnatal day 21. To further determine whether prenatal LPS exposure and maternal ω-3 PUFAs supplementation had persisting effects, brain injury was induced on PN 90 rats, following bilateral intranigral LPS injection. Pre- and postnatal inflammation damage not only affected dopaminergic neurons directly, but it also modified critical features, such as activated microglia and astrocyte cells, disrupting the support provided by the microenvironment. Unexpectedly, our results failed to show any involvement of caspase-dependent and independent apoptosis pathway in neuronal death mechanisms. On the other hand, learning and memory deficits detected with a second toxic exposure were significantly attenuated in maternal ω-3 PUFAs supplementation group. In addition, ω-3 PUFAs promote beneficial effect on synaptic function, maintaining the neurochemical integrity in remaining neurons, without necessarily protect them from neuronal death. Thus, our results suggest that ω-3 PUFAs affect the functional ability of the central nervous system in a complex way in a multiple inflammation-induced neurotoxicity animal model of PD and they disclose new ways of understanding how these fatty acids control responses of the brain to different challenges.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Doença de Parkinson/dietoterapia , Doença de Parkinson/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Animais , Animais Recém-Nascidos , Suplementos Nutricionais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Feminino , Inflamação/dietoterapia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/patologia , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar
3.
Mol Neurobiol ; 53(10): 6997-7009, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26671617

RESUMO

Diabetes is a chronic disease associated with depression whose pathophysiological mechanisms that associate these conditions are not fully elucidated. However, the activation of the indoleamine-2,3-dioxygenase (IDO), an enzyme that participate of the tryptophan metabolism leading to a decrease of serotonin (5-HT) levels and whose expression is associated with an immune system activation, has been proposed as a common mechanism that links depression and diabetes. To test this hypothesis, diabetic (DBT) and normoglycemic (NGL) groups had the cytokines (TNFα, IL-1ß, and IL-6) and 5-HT and norepinephrine (NE) levels in the hippocampus (HIP) evaluated. Moreover, the effect of the selective serotonin reuptake inhibitor fluoxetine (FLX), IDO direct inhibitor 1-methyl-tryptophan (1-MT), anti-inflammatory and IDO indirect inhibitor minocycline (MINO), or non-selective cyclooxygenase inhibitor ibuprofen (IBU) was evaluated in DBT rats submitted to the modified forced swimming test (MFST). After the behavioral test, the HIP was obtained for IDO expression by Western blotting analysis. DBT rats exhibited a significant increase in HIP levels of TNFα, IL-1ß, and IL-6 and a decrease in HIP 5-HT and NA levels. They also presented a depressive-like behavior which was reverted by all employed treatments. Interestingly, treatment with MINO, IBU, or FLX but not with 1-MT reduced the increased IDO expression in the HIP from DBT animals. Taken together, our data support our hypothesis that neuroinflammation in the HIP followed by IDO activation with a consequent decrease in the 5-HT levels can be a possible pathophysiological mechanism that links depression to diabetes.


Assuntos
Depressão/tratamento farmacológico , Diabetes Mellitus Experimental/psicologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Cinurenina/metabolismo , Terapia de Alvo Molecular , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Glicemia/metabolismo , Citocinas/metabolismo , Depressão/sangue , Depressão/patologia , Depressão/fisiopatologia , Diabetes Mellitus Experimental/sangue , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Hipocampo/metabolismo , Hipocampo/patologia , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Minociclina/farmacologia , Minociclina/uso terapêutico , Atividade Motora/efeitos dos fármacos , Norepinefrina/metabolismo , Ratos Wistar , Serotonina/metabolismo , Natação , Triptofano/análogos & derivados , Triptofano/farmacologia , Triptofano/uso terapêutico , Aumento de Peso/efeitos dos fármacos
4.
J Biol Chem ; 290(9): 5685-95, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25561728

RESUMO

Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Tiorredoxinas/metabolismo , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Sítios de Ligação/genética , Western Blotting , Cromatografia Líquida , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Proteoma/genética , Interferência de RNA , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...