Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34575591

RESUMO

Cellulose nanofibers (CNF) were employed as the nanoreinforcement of a retrograded starch/pectin (RS/P) excipient to optimize its colon-specific properties. Although starch retrogradation ranged from 32 to 73%, CNF addition discretely disfavored the RS yield. This result agrees with the finding that in situ CNF reduces the presence of the RS crystallinity pattern. A thermal analysis revealed that the contribution of pectin improves the thermal stability of the RS/CNF mixture. Through a complete factorial design, it was possible to optimize the spray-drying conditions to obtain powders with high yield (57%) and low moisture content (1.2%). The powders observed by Field Emission Gum Scanning Electron Microscopy (FEG-SEM) had 1-10 µm and a circular shape. The developed methodology allowed us to obtain 5-aminosalicilic acid-loaded microparticles with high encapsulation efficiency (16-98%) and drug loading (1.97-26.63%). The presence of CNF in RS/P samples was responsible for decreasing the burst effect of release in simulated gastric and duodenal media, allowing the greatest mass of drug to be targeted to the colon. Considering that spray-drying is a scalable process, widely used by the pharmaceutical industry, the results obtained indicate the potential of these microparticles as raw material for obtaining other dosage forms to deliver 5-ASA to the distal parts of gastrointestinal tract, affected by inflammatory bowel disease.

2.
Int J Pharm ; 602: 120635, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895295

RESUMO

Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.


Assuntos
Sistemas de Liberação de Medicamentos , Poloxâmero , Administração Intravaginal , Feminino , Géis , Humanos , Vagina
3.
Carbohydr Polym ; 261: 117919, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766328

RESUMO

Vaginal administration is a promising route for the local treatment of infectious vaginal diseases since it can bypass the first-pass metabolism, drug interactions, and adverse effects. However, the commercial products currently available for topical vulvovaginal treatment have low acceptability and do not adequately explore this route. Mucoadhesive systems can optimize the efficacy of drugs administered by this route to increase the retention time of the drug in the vaginal environment. Several polymers are used to develop mucoadhesive systems, among them chitosan, a natural polymer that is highly biocompatible and technologically versatile. Thus, the present review aimed to analyze the studies that used chitosan to develop mucoadhesive systems for the treatment of local vaginal infections. These studies demonstrated that chitosan as a component of mucoadhesive drug delivery systems (DDS) is a promising device for the treatment of vaginal infectious diseases, due to the intrinsic antimicrobial activity of this biopolymer and because it does not interfere with the effectiveness of the drugs used for the treatment.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Quitosana/química , Portadores de Fármacos , Infecções do Sistema Genital/tratamento farmacológico , Doenças Vaginais/tratamento farmacológico , Administração Intravaginal , Anti-Infecciosos Locais/farmacocinética , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Quitosana/síntese química , Quitosana/farmacocinética , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Teste de Materiais , Infecções do Sistema Genital/metabolismo , Doenças Vaginais/metabolismo
4.
Crit Rev Microbiol ; 47(4): 435-460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33725462

RESUMO

Due to the high adaptability of Helicobacter pylori and the low targeting specificity of the drugs normally used in pharmacological therapy, the strains are becoming increasingly resistant to these drugs, making it difficult to eradicate the infection. Thus, the search for new therapeutic approaches has been considered urgent. The incorporation of drugs in advanced drug delivery systems, such as nano and microparticles, would allow the improvement of the retention time in the stomach and the prolongation of drug release rates at the target site. Because of this, the present review article aims to highlight the use of micro and nanoparticles as important technological tools for the treatment of H. pylori infections, focussing on the main nanotechnological systems, including nanostructured lipid carriers, liposomes, nanoemulsion, metallic nanoparticles, and polymeric nanoparticles, as well as microtechnological systems such as gastroretentive dosage forms, among them mucoadhesive, magnetic and floating systems were highlighted.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Infecções por Helicobacter/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Humanos , Nanopartículas/química
5.
Carbohydr Polym ; 256: 117504, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483027

RESUMO

Oral administration of insulin (INS) would represent a revolution in the treatment of diabetes, considering that this route mimics the physiological dynamics of endogenous INS. Nano- and microencapsulation exploiting the advantageous polysaccharides properties has been considered an important technological strategy to protect INS against harsh conditions of gastrointestinal tract, in the same time that improve the permeability via transcellular and/or paracellular pathways, safety and in some cases even selectivity for targeting delivery of INS. In fact, some polysaccharides also give to the systems functional properties such as pH-responsiveness, mucoadhesiveness under specific physiological conditions and increased intestinal permeability. In general, all polysaccharides can be functionalized with specific molecules becoming more selective to the cells to which INS is delivered. The present review highlights the advances in the past 10 years on micro- and nanoencapsulation of INS exploiting the unique natural properties of polysaccharides, including chitosan, starch, alginate, pectin, and dextran, among others.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Nanopartículas/química , Administração Oral , Alginatos/química , Animais , Quitosana/química , Dextranos/química , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Mucosa Intestinal/metabolismo , Nanopartículas/administração & dosagem , Pectinas/química , Permeabilidade , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...