Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271628

RESUMO

We study three different strategies of vaccination in an SEIRS (Susceptible-Exposed-Infected-Recovered-Susceptible) seasonal forced model, which are (i) continuous vaccination; (ii) periodic short-time localized vaccination, and (iii) periodic pulsed width campaign. Considering the first strategy, we obtain an expression for the basic reproduction number and infer a minimum vaccination rate necessary to ensure the stability of the disease-free equilibrium (DFE) solution. In the second strategy, short duration pulses are added to a constant baseline vaccination rate. The pulse is applied according to the seasonal forcing phases. The best outcome is obtained by locating intensive immunization at inflection of the transmissivity curve. Therefore, a vaccination rate of 44.4% of susceptible individuals is enough to ensure DFE. For the third vaccination proposal, additionally to the amplitude, the pulses have a prolonged time width. We obtain a non-linear relationship between vaccination rates and the duration of the campaign. Our simulations show that the baseline rates, as well as the pulse duration, can substantially improve the vaccination campaign effectiveness. These findings are in agreement with our analytical expression. We show a relationship between the vaccination parameters and the accumulated number of infected individuals, over the years, and show the relevance of the immunization campaign annual reaching for controlling the infection spreading. Regarding the dynamical behavior of the model, our simulations show that chaotic and periodic solutions as well as bi-stable regions depend on the vaccination parameters range.


Assuntos
Modelos Biológicos , Vacinação , Humanos , Estações do Ano , Simulação por Computador , Número Básico de Reprodução , Suscetibilidade a Doenças
2.
Chaos Solitons Fractals ; 142: 110431, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33199943

RESUMO

During an infectious disease outbreak, mathematical models and computational simulations are essential tools to characterize the epidemic dynamics and aid in design public health policies. Using these tools, we provide an overview of the possible scenarios for the COVID-19 pandemic in the phase of easing restrictions used to reopen the economy and society. To investigate the dynamics of this outbreak, we consider a deterministic compartmental model (SEIR model) with an additional parameter to simulate the restrictions. In general, as a consequence of easing restrictions, we obtain scenarios characterized by high spikes of infections indicating significant acceleration of the spreading disease. Finally, we show how such undesirable scenarios could be avoided by a control strategy of successive partial easing restrictions, namely, we tailor a successive sequence of the additional parameter to prevent spikes in phases of low rate of transmissibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...