Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fundam Clin Pharmacol ; : e13007, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738393

RESUMO

Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.

2.
J Antimicrob Chemother ; 79(3): 617-631, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297992

RESUMO

BACKGROUND: The ability of dermatophytes to develop biofilms in host tissues confers physical and biochemical resistance to antifungal drugs. Therefore, research to find new compounds against dermatophyte biofilm is crucial. OBJECTIVES: To evaluate the antifungal activity of riparin II (RIP2), nor-riparin II (NOR2) and dinor-riparin II (DINOR2) against Trichophyton rubrum, Microsporum canis and Nannizzia gypsea strains. METHODS: Initially, we determined the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of benzamides. We evaluated the inhibitory effects on the development of dermatophyte biofilms using in vitro and ex vivo models. Finally, we built three-dimensional models of the sulphite pump Ssu1 to investigate the interactions with the benzamides by molecular docking. RESULTS: RIP2 showed a broad spectrum of activity against T. rubrum, M. canis and N. gypsea, whereas NOR2 and DINOR2 were more selective. Furthermore, the shortening of the carbon chain from RIP2 benzamide to NOR2 and DINOR2 homologs caused a decrease in the MIC values. The benzamides reduced biofilm production and viability in vitro (P < 0.05) at MIC. This result was similar ex vivo in human nail fragments tests, but NOR2 and DINOR2 showed significant results at 2xMIC (P < 0.05). We constructed a model of the Ssu1 protein for each dermatophyte with high similarity. Molecular docking showed that the benzamides obtained higher binding energy values than ciclopirox. CONCLUSIONS: Our study shows the antibiofilm potential for riparin II-type benzamides as new drugs targeting dermatophytes by inhibiting the Ssu1 protein.


Assuntos
Antifúngicos , Arthrodermataceae , Tiramina/análogos & derivados , Humanos , Antifúngicos/farmacologia , Simulação de Acoplamento Molecular , Benzamidas/farmacologia , Biofilmes
3.
Arch Biochem Biophys ; 748: 109782, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839789

RESUMO

The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 µg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.


Assuntos
Clorpromazina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Simulação de Acoplamento Molecular , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Antibacterianos/química , Ciprofloxacina/farmacologia , Etídio , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
4.
Mycologia ; 115(2): 206-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36848618

RESUMO

Dermatophytosis is one of the most frequent superficial mycoses in the world. They are mainly caused by the dermatophytes Trichophyton rubrum and Microsporum canis. Biofilm production is an essential factor in the pathogenesis of dermatophytes; it confers drug resistance and significantly impairs antifungal effectiveness. Therefore, we evaluated the antibiofilm activity of an alkamide-type alkaloid called riparin 1 (RIP1) against clinically relevant dermatophytes. We also produced synthetic nor (NOR1) and dinor (DINOR1) homologs for pharmacological evaluation, with a 61-70% yield. We used in vitro (96-well polystyrene plates) and ex vivo (hair fragments) models to verify the effects of these compounds on the formation and viability of biofilms. RIP1 and NOR1 showed antifungal activity against strains of T. rubrum and M. canis, but DINOR1 showed no significant antifungal activity against the dermatophytes. Furthermore, RIP1 and NOR1 significantly reduced the viability of biofilms in vitro and ex vivo (P < 0.05). RIP1 was more potent than NOR1, possibly due to the distance between the p-methoxyphenyl and the phenylamide moieties in these compounds. Due to the significant antifungal and antibiofilm activities observed for RIP1 and NOR1, we suggest that they could be useful in the treatment of dermatophytosis.


Assuntos
Arthrodermataceae , Dermatomicoses , Tinha , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Dermatomicoses/tratamento farmacológico , Biofilmes
5.
J Fungi (Basel) ; 9(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36836345

RESUMO

The ability of dermatophytes to develop biofilms is possibly involved in therapeutic failure because biofilms impair drug effectiveness in the infected tissues. Research to find new drugs with antibiofilm activity against dermatophytes is crucial. In this way, riparins, a class of alkaloids that contain an amide group, are promising antifungal compounds. In this study, we evaluated the antifungal and antibiofilm activity of riparin III (RIP3) against Trichophyton rubrum, Microsporum canis, and Nannizzia gypsea strains. We used ciclopirox (CPX) as a positive control. The effects of RIP3 on fungal growth were evaluated by the microdilution technique. The quantification of the biofilm biomass in vitro was assessed by crystal violet, and the biofilm viability was assessed by quantifying the CFU number. The ex vivo model was performed on human nail fragments, which were evaluated by visualization under light microscopy and by quantifying the CFU number (viability). Finally, we evaluated whether RIP3 inhibits sulfite production in T. rubrum. RIP3 inhibited the growth of T. rubrum and M. canis from 128 mg/L and N. gypsea from 256 mg/L. The results showed that RIP3 is a fungicide. Regarding antibiofilm activity, RIP3 inhibited biofilm formation and viability in vitro and ex vivo. Moreover, RIP3 inhibited the secretion of sulfite significantly and was more potent than CPX. In conclusion, the results indicate that RIP3 is a promising antifungal agent against biofilms of dermatophytes and might inhibit sulfite secretion, one relevant virulence factor.

6.
Bioorg Med Chem Lett ; 52: 128393, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606997

RESUMO

In the current study a late-stage diversification of unactivated olefins labd-8(17)-en-15-oic acid (1a) and methyl labd-8(17)-en-15-oate (1b) via Heck-Matsuda arylation is described. The reaction provided straightforward and practical access to a series of novel aryl-labdane-type derivatives (HM adducts 3a-h) in moderate to good yields in a highly regio- and stereoselective manner at room temperature under air atmosphere. The cytotoxic activity of these compounds was investigated in vitro against three different human cell lines (THP-1, K562, MCF-7). Of these, HM adduct 3h showed a selective effect in all cancer cell lines tested and was selected for extended biological investigations in a leukemia cell line (K562), which demonstrated that the cytotoxic/antiproliferative activity observed in this compound might be mediated by induction of cell cycle arrest at the sub-G1 phase and by autophagy-induced cell death. Taken together, these findings indicate that further investigation into the anticancer activity against chronic myeloid leukemia from aryl-labdane-type derivatives may be fruitful.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...