Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 311: 123526, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32446238

RESUMO

This study aimed to assess the harvesting of Spirulina platensis using coagulants and electrocoagulation-flotation (ECF) and to evaluate its influence on enzymatic hydrolysis. Using nine chemical coagulants, we obtained a biomass harvesting efficiency of up to 99.5%. Using ECF, the harvesting efficiency at the aluminum and carbon electrode was 98%-99% and 33.8%-86.9%, respectively. Hydrolysis efficiency (HE) with amylases varied from 17% to 42%, and the degree of hydrolysis (DH) with proteases varied from 1.26% to 4.07%, compared with an HE of 31% and a DH of 3.57% in the centrifuged biomass. Compared to an HE of 61.75% for the centrifuged biomass, and HE of 99% and 85.46% was obtained for the biomass harvested using the aluminum and carbon electrodes. The HEs with the electrodes were better than those with the alternative methods and centrifugation; hence, with some optimization, the biomass harvested could be used for enzymatic hydrolysis.


Assuntos
Microalgas , Spirulina , Biomassa , Eletrocoagulação , Hidrólise
2.
Bioresour Technol ; 288: 121588, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176943

RESUMO

This study aimed to produce bioethanol using Spirulina platensis biomass and the use of saccharification and fermentation wastes of bioethanol production to produce biomethane. The potential for energy generation in each technological route was quantified. Both, the enzymatic hydrolysis of the microalgae polysaccharides and the fermentation process, presented efficiencies above 80%. The fermentation of the hydrolyzate into ethanol was possible without the addition of synthetic nutrients to the must. The direct conversion of Spirulina biomass to biomethane had an energy potential of 16,770 kJ.kg-1, while bioethanol production from the hydrolysed biomass presented 4,664 kJ.kg-1. However, the sum of the energy potential obtained by producing bioethanol followed by the production of biomethane with the saccharification and fermentation residues was 13,945 kJ.kg-1. Despite this, the same raw material was able to produce both biofuels, demonstrating that Spirulina microalgae is a promising alternative to contribute in the field of renewable energies.


Assuntos
Microalgas , Spirulina , Biocombustíveis , Biomassa , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA