Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443723

RESUMO

Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.


Assuntos
Esclerose Lateral Amiotrófica , Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Humanos , Sistema Nervoso Central , Óxido Nítrico
3.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053981

RESUMO

The social and economic impact of chronic inflammatory diseases, such as arthritis, explains the growing interest of the research in this field. The antioxidant and anti-inflammatory properties of the endogenous gasotransmitter hydrogen sulfide (H2S) were recently demonstrated in the context of different inflammatory diseases. In particular, H2S is able to suppress the production of pro-inflammatory mediations by lymphocytes and innate immunity cells. Considering these biological effects of H2S, a potential role in the treatment of inflammatory arthritis, such as rheumatoid arthritis (RA), can be postulated. However, despite the growing interest in H2S, more evidence is needed to understand the pathophysiology and the potential of H2S as a therapeutic agent. Within this review, we provide an overview on H2S biological effects, on its role in immune-mediated inflammatory diseases, on H2S releasing drugs, and on systems of tissue repair and regeneration that are currently under investigation for potential therapeutic applications in arthritic diseases.


Assuntos
Artrite/tratamento farmacológico , Gasotransmissores/imunologia , Gasotransmissores/uso terapêutico , Sulfeto de Hidrogênio/imunologia , Sulfeto de Hidrogênio/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/imunologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Gasotransmissores/administração & dosagem , Humanos , Sulfeto de Hidrogênio/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/imunologia , Estresse Oxidativo/efeitos dos fármacos
4.
Commun Biol ; 2: 317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453381

RESUMO

There is a growing interest in therapeutically targeting the inflammatory response that underlies age-related chronic diseases including obesity and type 2 diabetes. Through integrative small RNA sequencing, we show the presence of conserved plant miR159a and miR156c in dried nuts having high complementarity with the mammalian TNF receptor superfamily member 1a (Tnfrsf1a) transcript. We detected both miR159a and miR156c in exosome-like nut nanovesicles (NVs) and demonstrated that such NVs reduce Tnfrsf1a protein and dampen TNF-α signaling pathway in adipocytes. Synthetic single-stranded microRNAs (ss-miRs) modified with 2'-O-methyl group function as miR mimics. In plants, this modification naturally occurs on nearly all small RNAs. 2'-O-methylated ss-miR mimics for miR156c and miR159a decreased Tnfrsf1a protein and inflammatory markers in hypertrophic as well as TNF-α-treated adipocytes and macrophages. miR156c and miR159a mimics effectively suppress inflammation in mice, highlighting a potential role of plant miR-based, single-stranded oligonucleotides in treating inflammatory-associated metabolic diseases.


Assuntos
Adipócitos/metabolismo , Dessecação , Nozes/genética , RNA de Plantas/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/metabolismo , Células HEK293 , Humanos , Hipertrofia , Inflamação/genética , Inflamação/patologia , Insulina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...