Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 188: 106013, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209442

RESUMO

Sargassum species are among the most important canopy-forming algae in the Western Atlantic Ocean (WAO), providing habitat for many species and contributing to carbon uptake. The future distribution of Sargassum and other canopy-forming algae has been modelled worldwide, indicating that their occurrence in many regions is threatened by increased seawater temperature. Surprisingly, despite the recognized variation in vertical distribution of macroalgae, these projections generally do not evaluate their results at different depth ranges. This study aimed to project the potential current and future distributions of the common and abundant benthic Sargassum natans in the WAO (from southern Argentina to eastern Canada), under RCP 4.5 and 8.5 climate change scenarios, through an ensemble SDM approach. Possible changes between present and future distributions were assessed within two depth ranges, namely areas up to 20 m and areas up to 100 m depth. Our models forecast different distributional trends for benthic S. natans depending on the depth range. Up to 100 m, suitable areas for the species will increase by 21% under RCP 4.5, and by 15% under RCP 8.5, when compared to the potential current distribution. On the contrary, up to 20 m, suitable areas for the species will decrease by 4% under RCP 4.5 and by 14% under RCP 8.5, when compared to the potential current distribution. Under the worst scenario, losses up to 20 m depth will affect approximately 45,000 km2 of coastal areas across several countries and regions of WAO, with likely negative consequences for the structure and dynamics of coastal ecosystems. These findings highlight the importance of considering different depth ranges when building and interpreting predictive models of the distribution of habitat-forming subtidal macroalgae under climate change.


Assuntos
Sargassum , Alga Marinha , Aquecimento Global , Ecossistema , Mudança Climática , Oceano Atlântico
2.
Mar Pollut Bull ; 172: 112804, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34388448

RESUMO

Ecological indices are useful tools for environmental managers to monitor and detect changes caused by natural or anthropogenic disturbances. Despite the fact that descriptors of Fucales species are often included in indices for evaluating changes in coastal marine habitats, there is no index based solely on Fucales abundance. This study proposes the Fucales Index (FI), based on four classes of abundance of a selected Fucales species. The ability of FI to detect changes in the abundance of Sargassum sp. was tested in a Brazilian bay that is subjected to the effluent plume from a nuclear power plant. FI was significantly different when comparing areas inside and outside of the plume area, and it increased with increasing distance from the source of the disturbance. These findings suggest that FI is a suitable tool for assessing the effect of an effluent plume and potentially of other disturbances on rocky shores hosting Fucales.


Assuntos
Phaeophyceae , Sargassum , Baías , Ecossistema , Monitoramento Ambiental , Centrais Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...