Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 19(1): 193, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30428903

RESUMO

BACKGROUND: Integrating demography and adaptive evolution is pivotal to understanding the evolutionary history and conservation of great apes. However, little is known about the adaptive evolution of our closest relatives, in particular if and to what extent adaptions to environmental differences have occurred. Here, we used whole-genome sequencing data from critically endangered orangutans from North Sumatra (Pongo abelii) and Borneo (P. pygmaeus) to investigate adaptive responses of each species to environmental differences during the Pleistocene. RESULTS: Taking into account the markedly disparate demographic histories of each species after their split ~ 1 Ma ago, we show that persistent environmental differences on each island had a strong impact on the adaptive evolution of the genus Pongo. Across a range of tests for positive selection, we find a consistent pattern of between-island and species differences. In the more productive Sumatran environment, the most notable signals of positive selection involve genes linked to brain and neuronal development, learning, and glucose metabolism. On Borneo, however, positive selection comprised genes involved in lipid metabolism, as well as cardiac and muscle activities. CONCLUSIONS: We find strikingly different sets of genes appearing to have evolved under strong positive selection in each species. In Sumatran orangutans, selection patterns were congruent with well-documented cognitive and behavioral differences between the species, such as a larger and more complex cultural repertoire and higher degrees of sociality. However, in Bornean orangutans, selective responses to fluctuating environmental conditions appear to have produced physiological adaptations to generally lower and temporally more unpredictable food supplies.


Assuntos
Adaptação Biológica , Evolução Biológica , Variação Genética , Genética Populacional , Genoma , Pongo/genética , Animais , Especiação Genética , Filogenia , Pongo/classificação
3.
Curr Biol ; 27(22): 3487-3498.e10, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29103940

RESUMO

Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.


Assuntos
Especiação Genética , Pongo/genética , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Espécies em Perigo de Extinção , Fluxo Gênico/genética , Variação Genética , Genoma , Genômica , Hominidae/genética , Metagenômica/métodos , Filogenia , Pongo/classificação , Pongo/fisiologia , Pongo abelii/genética , Pongo pygmaeus/genética
4.
Eur J Pediatr ; 174(8): 1069-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25749928

RESUMO

UNLABELLED: Common variable immunodeficiency (CVID) is a heterogeneous primary immunodeficiency associated with an increased risk of malignancy in adulthood, with lymphoma as one of the major causes of death. The aim of this study is to describe those malignancies detected in our cohort of pediatric CVID patients. We reviewed the clinical and laboratory data and the treatments and their outcomes in all pediatric CVID patients from our institution that developed a neoplasia. Four malignancies were diagnosed in three out of 27 pediatric CVID patients. Three malignancies were non-Hodgkin lymphoma (NHL) of B cell origin (mean age at diagnosis: 8 years old), and the remaining was a low-grade astrocytoma. Among NHL, two were mucosa-associated lymphoid tissue (MALT) lymphomas and one was associated with Epstein-Barr virus infection. NHL developed before CVID diagnosis in two patients. CVID patients showed different clinical phenotypes and belonged to different groups according Euroclass and Pediatric classification criteria. CONCLUSIONS: Malignancies, especially lymphoma, may develop in pediatric CVID patients with no previous signs of lymphoid hyperplasia and even before CVID diagnosis. Consequently, strategies for cancer prevention and/or early diagnosis are required in pediatric CVID patients.


Assuntos
Astrocitoma/diagnóstico , Imunodeficiência de Variável Comum/complicações , Linfoma não Hodgkin/diagnóstico , Adolescente , Astrocitoma/etiologia , Astrocitoma/imunologia , Criança , Imunodeficiência de Variável Comum/imunologia , Diagnóstico Precoce , Feminino , Humanos , Incidência , Linfoma não Hodgkin/etiologia , Linfoma não Hodgkin/imunologia , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...