Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Struct Dyn ; 5(4): 044302, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30175156

RESUMO

We have investigated nuclear dynamics in bound and dissociating acetylene molecular ions in a time-resolved reaction microscopy experiment with a pair of few-cycle pulses. Vibrating bound acetylene cations or dissociating dications are produced by the first pulse. The second pulse probes the nuclear dynamics by ionization to higher charge states and Coulomb explosion of the molecule. For the bound cations, we observed vibrations in acetylene (HCCH) and its isomer vinylidene (CCHH) along the CC-bond with a periodicity of around 26 fs. For dissociating dication molecules, a clear indication of enhanced ionization is found to occur along the CH- and CC-bonds after 10 fs to 40 fs. The time-dependent ionization processes are simulated using semi-classical on-the-fly dynamics revealing the underling mechanisms.

2.
Opt Express ; 25(13): 14192-14203, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789005

RESUMO

Directional breaking of the C-H/C-D molecular bond is manipulated in acetylene (C2H2) and deuterated acetylene (C2D2) by waveform controlled few-cycle mid-infrared laser pulses with a central wavelength around 1.6 µm at an intensity of about 8 × 1013 W/cm2. The directionality of the deprotonation of acetylene is controlled by changing the carrier-envelope phase (CEP). The CEP-control can be attributed to the laser-induced superposition of vibrational modes, which is sensitive to the sub-cycle evolution of the laser waveform. Our experiments and simulations indicate that near-resonant, intense mid-infrared pulses permit a higher degree of control of the directionality of the reaction compared to those obtained in near-infrared fields, in particular for the deuterated species.

3.
Sci Rep ; 7(1): 4441, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667335

RESUMO

Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4 and C2D6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.

4.
Phys Rev Lett ; 116(19): 193001, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232019

RESUMO

Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to manipulate the movement of nuclei with tailored light within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely, acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics is monitored using coincident 3D momentum imaging spectroscopy and described with a widely applicable quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wave packet by the intense off-resonant laser field.

5.
J Phys Chem A ; 118(26): 4661-9, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24893314

RESUMO

The reactive collision of chloride anions and methyl iodide molecules forming iodide anions and methyl chloride is a typical example of a concerted bimolecular nucleophilic substitution (SN2) reaction. We present wave packet dynamics calculations to investigate quantum effects in the collinear gas phase reaction. A new type of reduced coordinate system is introduced to allow for an efficient solution of the time-dependent Schrödinger equation on an ab initio potential energy surface. The reduced coordinates were designed to study the direct rebound mechanism under the Walden inversion. Especially the suppressed direct rebound mechanism at low collision energies, the quantum effects of the initial state preparation and the influence of the CH3 inversion mode are addressed. The internal energy distributions of the molecular product are evaluated from the wave packet calculations and compared to experimental results obtained with crossed-beam velocity map ion imaging. The observed reactivity is discussed in light of a dynamical barrier, a concept that is illustrated by the wave packet dynamics.

6.
Nat Commun ; 5: 3800, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24806279

RESUMO

Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.

7.
Nat Commun ; 4: 2895, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24309433

RESUMO

Shaping ultrafast laser pulses using adaptive feedback can manipulate dynamics in molecular systems, but extracting information from the optimized pulse remains difficult. Experimental time constraints often limit feedback to a single observable, complicating efforts to decipher the underlying mechanisms and parameterize the search process. Here we show, using two strong-field examples, that by rapidly inverting velocity map images of ions to recover the three-dimensional photofragment momentum distribution and incorporating that feedback into the control loop, the specificity of the control objective is markedly increased. First, the complex angular distribution of fragment ions from the nω+C2D4→C2D3++D interaction is manipulated. Second, isomerization of acetylene (nω+C2H2→C2H2(2+)→CH2++C+) is controlled via a barrier-suppression mechanism, a result that is validated by model calculations. Collectively, these experiments comprise a significant advance towards the fundamental goal of actively guiding population to a specified quantum state of a molecule.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Lasers , Modelos Químicos , Acetileno/química , Desenho de Equipamento , Etilenos/química , Processamento de Imagem Assistida por Computador/instrumentação , Íons/análise , Reprodutibilidade dos Testes
8.
Phys Rev Lett ; 108(6): 063002, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401063

RESUMO

The steering of electron motion in molecules is accessible with waveform-controlled few-cycle laser light and may control the outcome of light-induced chemical reactions. An optical cycle of light, however, is much shorter than the duration of the fastest dissociation reactions, severely limiting the degree of control that can be achieved. To overcome this limitation, we extended the control metrology to the midinfrared studying the prototypical dissociative ionization of D(2) at 2.1 µm. Pronounced subcycle control of the directional D(+) ion emission from the fragmentation of D(2)(+) is observed, demonstrating unprecedented charge-directed reactivity. Two reaction pathways, showing directional ion emission, could be observed and controlled simultaneously for the first time. Quantum-dynamical calculations elucidate the dissociation channels, their observed phase relation, and the control mechanisms.

9.
Phys Chem Chem Phys ; 13(19): 8653-8, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21475765

RESUMO

Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D(+) and Cl(+) fragments were recorded via velocity-map imaging. A waveform-dependent anti-correlated directional emission of D(+) and Cl(+) fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl(+) and in turn the directional emission of charged fragments upon the breakup of the molecular ion.


Assuntos
Cloretos/química , Deutério/química , Lasers , Teoria Quântica
10.
Phys Rev Lett ; 103(10): 103002, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19792301

RESUMO

Laser pulses with stable electric field waveforms establish the opportunity to achieve coherent control on attosecond time scales. We present experimental and theoretical results on the steering of electronic motion in a multielectron system. A very high degree of light-waveform control over the directional emission of C(+) and O(+) fragments from the dissociative ionization of CO was observed. Ab initio based model calculations reveal contributions to the control related to the ionization and laser-induced population transfer between excited electronic states of CO(+) during dissociation.

11.
J Chem Phys ; 128(16): 167101; author reply 167102, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18447511

RESUMO

Suitable molecules for quantum computing cannot be discussed in terms of anharmonicity and CNOT gates alone. The validity of the approximate approach [M. Zhao and D. Babikov, J. Chem. Phys.126, 204102 (2007)] is limited. Frequencies and anharmonicities cannot be used independent from the molecule. Hermite polynomials with the linear approximation for the dipole moment lead to oversimplified gates with potentially low intensities.

12.
Phys Chem Chem Phys ; 9(3): 369-76, 2007 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-17199153

RESUMO

In this theoretical study vibrational ladder climbing in transition metal carbonyl complexes, as a possible means to initialize chemical ground state reactions, and the resulting vibrational population distribution using chirped mid-infrared femtosecond laser pulses is investigated. Our model system is MnBr(CO)(5), a strong IR-absorber within an experimentally easily accessible wavelength region. Special emphasis is put on the perturbation due to additional vibrational modes, especially on one, which allows dissociation at low energies. The related potential energy surface for the three representative modes is calculated, whereon quantum dynamics calculations, including the laser-molecule interaction, are performed. No significant coupling could be detected, neither in the bound, nor in the dissociative region. Contrarily, we found a dynamical barrier even for energies high above the dissociation limit. Different vibrational population distributions after the laser excitation of the CO stretching mode could be generated in dependence of the chirp parameters. Based on these findings we simulated the laser excitation corresponding to an experiment by M. Joffre et al., Proc. Natl. Acad. Ssi. U. S. A., 2004, 101(36), 13216-13220, where coherent vibrational ladder climbing in carboxyhemoglobin was demonstrated and we could offer an explanation for an open question, concerning the interpretation of the spectroscopic data.

13.
J Chem Phys ; 123(24): 244509, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16396551

RESUMO

Our concept for a quantum computational system is based on qubits encoded in vibrational normal modes of polyatomic molecules. The quantum gates are implemented by shaped femtosecond laser pulses. We adopt this concept to the new species manganese pentacarbonyl bromide [MnBr(CO)5] and show that it is a promising candidate in the mid-infrared (IR) frequency range to connect theory and experiment. As direct reference for the ab initio calculations we evaluated experimentally the absorption bands of MnBr(CO)5 in the mid-IR as well as the related transition dipole moments. The two-dimensional potential-energy surface spanned by the two strongest IR active modes and the dipole vector surfaces are calculated with density-functional theory. The vibrational eigenstates representing the qubit system are determined. Laser pulses are optimized by multitarget optimal control theory to form a set of global quantum gates: NOT, CNOT, Pi, and Hadamard. For all of them simply structured pulses with low pulse energies around 1 microJ could be obtained. Exemplarily for the CNOT gate we investigated the possible transfer to experimental shaping, based on the mask function for pulse shaping in the frequency regime as well as decomposition into a train of subpulses.

14.
Science ; 288(5467): 824-8, 2000 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-10796997

RESUMO

This review puts into perspective the present state and prospects for controlling quantum phenomena in atoms and molecules. The topics considered include the nature of physical and chemical control objectives, the development of possible quantum control rules of thumb, the theoretical design of controls and their laboratory realization, quantum learning and feedback control in the laboratory, bulk media influences, and the ability to utilize coherent quantum manipulation as a means for extracting microscopic information. The preview of the field presented here suggests that important advances in the control of molecules and the capability of learning about molecular interactions may be reached through the application of emerging theoretical concepts and laboratory technologies.

15.
Proc Natl Acad Sci U S A ; 96(15): 8328-9, 1999 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-10411871

RESUMO

Many elementary chemical and physical processes such as the breaking of a chemical bond or the vibrational motion of atoms within a molecule take place on a femtosecond (fs = 10(-15)s) or picosecond (ps = 10(-12)s) time scale. It is now possible to monitor these events as a function of time with temporal resolution well below 100 fs. This capability is based on the pump-probe technique where one optical pulse triggers a reaction and a second delayed optical pulse probes the changes that ensue. To illustrate this capability, the dynamics of ligand motion within a protein are presented. Moving beyond casual observation of a reaction to active control of its outcome requires additional experimental and theoretical effort. To illustrate the concept of control, the effect of optical pulse duration on the vibrational dynamics of a tri-atomic molecule are discussed. The experimental and theoretical resources currently available are poised to make the dream of reaction control a reality for certain molecular systems.


Assuntos
Mioglobina/química , Animais , Monóxido de Carbono/química , Cinética , Ligantes , Fotólise , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...