Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38853708

RESUMO

Background: Urban areas are unique ecosystems with stark differences in species abundance and composition compared with natural ecosystems. These differences can affect pathogen transmission dynamics, thereby altering zoonotic pathogen prevalence and diversity. In this study, we screened small mammals from natural and urban areas in the Netherlands for up to 19 zoonotic pathogens, including viruses, bacteria, and protozoan parasites. Materials and Methods: In total, 578 small mammals were captured, including wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), yellow-necked mice (Apodemus flavicollis), house mice (Mus musculus), common voles (Microtus arvalis), and greater white-toothed shrews (Crocidura russula). We detected a wide variety of zoonotic pathogens in small mammals from both urban and natural areas. For a subset of these pathogens, in wood mice and bank voles, we then tested whether pathogen prevalence and diversity were associated with habitat type (i.e., natural versus urban), degree of greenness, and various host characteristics. Results: The prevalence of tick-borne zoonotic pathogens (Borrelia spp. and Neoehrlichia mikurensis) was significantly higher in wood mice from natural areas. In contrast, the prevalence of Bartonella spp. was higher in wood mice from urban areas, but this difference was not statistically significant. Pathogen diversity was higher in bank voles from natural habitats and increased with body weight for both rodent species, although this relationship depended on sex for bank voles. In addition, we detected methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase/AmpC-producing Escherichia coli, and lymphocytic choriomeningitis virus for the first time in rodents in the Netherlands. Discussion: The differences between natural and urban areas are likely related to differences in the abundance and diversity of arthropod vectors and vertebrate community composition. With increasing environmental encroachment and changes in urban land use (e.g., urban greening), it is important to better understand transmission dynamics of zoonotic pathogens in urban environments to reduce potential disease risks for public health.

2.
Sci Rep ; 13(1): 21627, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062065

RESUMO

The distribution of tick-borne encephalitis virus (TBEV) is expanding to Western European countries, including the Netherlands, but the contribution of different rodent species to the transmission of TBEV is poorly understood. We investigated whether two species of wild rodents native to the Netherlands, the wood mouse Apodemus sylvaticus and the yellow-necked mouse Apodemus flavicollis, differ in their relative susceptibility to experimental infection with TBEV. Wild-caught individuals were inoculated subcutaneously with the classical European subtype of TBEV (Neudoerfl) or with TBEV-NL, a genetically divergent TBEV strain from the Netherlands. Mice were euthanised and necropsied between 3 and 21 days post-inoculation. None of the mice showed clinical signs or died during the experimental period. Nevertheless, TBEV RNA was detected up to 21 days in the blood of both mouse species and TBEV was also isolated from the brain of some mice. Moreover, no differences in infection rates between virus strains and mouse species were found in blood, spleen, or liver samples. Our results suggest that the wood mouse and the yellow-necked mouse may equally contribute to the transmission cycle of TBEV in the Netherlands. Future experimental infection studies that include feeding ticks will help elucidate the relative importance of viraemic transmission in the epidemiology of TBEV.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Carrapatos , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Murinae , Países Baixos
3.
Euro Surveill ; 28(40)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796441

RESUMO

BackgroundRodent-borne viruses such as orthohantaviruses and arenaviruses cause considerable disease burden with regional and temporal differences in incidence and clinical awareness. Therefore, it is important to regularly evaluate laboratory diagnostic capabilities, e.g. by external quality assessments (EQA).AimWe wished to evaluate the performance and diagnostic capability of European expert laboratories to detect orthohantaviruses and lymphocytic choriomeningitis virus (LCMV) and human antibody response towards orthohantaviruses.MethodsWe conducted an EQA in 2021; molecular panels consisted of 12 samples, including different orthohantaviruses (Seoul, Dobrava-Belgrade (DOBV), Puumala (PUUV) and Hantaan orthohantavirus), LCMV and negative controls. Serological panels consisted of six human serum samples reactive to PUUV, DOBV or negative to orthohantaviruses. The EQA was sent to 25 laboratories in 20 countries.ResultsThe accuracy of molecular detection of orthohantaviruses varied (50‒67%, average 62%) among 16 participating laboratories, while LCMV samples were successfully detected in all 11 participating laboratories (91-100%, average 96%). The accuracy of serological diagnosis of acute and past orthohantavirus infections was on average 95% among 20 participating laboratories and 82% in 19 laboratories, respectively. A variety of methods was used, with predominance of in-house assays for molecular tests, and commercial assays for serological ones.ConclusionSerology, the most common tool to diagnose acute orthohantavirus infections, had a high accuracy in this EQA. The molecular detection of orthohantaviruses needs improvement while LCMV detection (performed in fewer laboratories) had 95% accuracy. Further EQAs are recommended to be performed periodically to monitor improvements and challenges in the diagnostics of rodent-borne diseases.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Humanos , Vírus da Coriomeningite Linfocítica/genética , Europa (Continente)/epidemiologia , Infecções por Hantavirus/diagnóstico , Anticorpos Antivirais
4.
Infect Ecol Epidemiol ; 13(1): 2229583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398878

RESUMO

Leptospirosis is a zoonosis caused by the spirochete Leptospira spp. It is often not clear why certain areas appear to be hotspots for human leptospirosis. Therefore, a predictive risk map for the Netherlands was developed and assessed, based on a random forest model for human leptospirosis incidence levels with various environmental factors and rat density as variables. Next, it was tested whether misclassifications of the risk map could be explained by the prevalence of Leptospira spp. in brown rats. Three recreational areas were chosen, and rats (≥25/location) were tested for Leptospira spp. Concurrently, it was investigated whether Leptospira spp. prevalence in brown rats was associated with Leptospira DNA concentration in surface water, to explore the usability of this parameter in future studies. Approximately 1 L of surface water sample was collected from 10 sites and was tested for Leptospira spp. Although the model predicted the locations of patients relatively well, this study showed that the prevalence of Leptospira spp. infection in rats may be an explaining variable that could improve the predictive model performance. Surface water samples were all negative, even if they had been taken at sites with a high Leptospira spp. prevalence in rats.

5.
Sci Total Environ ; 896: 165069, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37392874

RESUMO

Urban greening has benefits for both human and environmental health. However, urban greening might also have negative effects as the abundance of wild rats, which can host and spread a great diversity of zoonotic pathogens, increases with urban greenness. Studies on the effect of urban greening on rat-borne zoonotic pathogens are currently unavailable. Therefore, we investigated how urban greenness is associated with rat-borne zoonotic pathogen prevalence and diversity, and translated this to human disease hazard. We screened 412 wild rats (Rattus norvegicus and Rattus rattus) from three cities in the Netherlands for 18 different zoonotic pathogens: Bartonella spp., Leptospira spp., Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis, Spiroplasma spp., Streptobacillus moniliformis, Coxiella burnetii, Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)/AmpC-producing Escherichia coli, rat hepatitis E virus (ratHEV), Seoul orthohantavirus, Cowpox virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Toxoplasma gondii and Babesia spp. We modelled the relationships between pathogen prevalence and diversity and urban greenness. We detected 13 different zoonotic pathogens. Rats from greener urban areas had a significantly higher prevalence of Bartonella spp. and Borrelia spp., and a significantly lower prevalence of ESBL/AmpC-producing E. coli and ratHEV. Rat age was positively correlated with pathogen diversity while greenness was not related to pathogen diversity. Additionally, Bartonella spp. occurrence was positively correlated with that of Leptospira spp., Borrelia spp. and Rickettsia spp., and Borrelia spp. occurrence was also positively correlated with that of Rickettsia spp. Our results show an increased rat-borne zoonotic disease hazard in greener urban areas, which for most pathogens was driven by the increase in rat abundance rather than pathogen prevalence. This highlights the importance of keeping rat densities low and investigating the effects of urban greening on the exposure to zoonotic pathogens in order to make informed decisions and to take appropriate countermeasures preventing zoonotic diseases.


Assuntos
COVID-19 , Staphylococcus aureus Resistente à Meticilina , Animais , Ratos , Humanos , Escherichia coli , SARS-CoV-2 , Zoonoses/epidemiologia
6.
Parasit Vectors ; 16(1): 103, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927723

RESUMO

BACKGROUND: Tick-borne encephalitis virus (TBEV) can cause severe neurological disease in humans. Its geographical distribution is expanding in Western Europe with unresolved causes and spatial patterns, necessitating enhanced surveillance. Monitoring the virus in the environment is complicated, as it usually relies on destructive sampling of small rodents to test organs for TBEV, which in addition to ethical considerations also raises issues for long-term monitoring or longitudinal studies. Moreover, even when the virus is not detected in the blood or organs of the rodent, TBEV can still be transmitted from an infected tick to uninfected ticks feeding nearby. This is due to the ability of TBEV to replicate and migrate locally within the epidermis of small mammals, including those that do not appear to have systemic infection. This suggests that the virus may be detectable in skin biopsies, which has been confirmed in experimentally infected laboratory rodents, but it remains unknown if this sample type may be a viable alternative to destructively obtained samples in the monitoring of natural TBEV infection. Here we test ear tissue and dried blood spot (DBS) samples from rodents to determine whether TBEV-RNA can be detected in biological samples obtained non-destructively. METHODS: Rodents were live-trapped and sampled at three woodland areas in The Netherlands where presence of TBEV has previously been recorded. Ear tissue (n = 79) and DBSs (n = 112) were collected from a total of 117 individuals and were tested for TBEV-RNA by real-time RT-PCR. RESULTS: TBEV-RNA was detected in five rodents (4.3% of tested individuals), all of which had a TBEV-positive ear sample, while only two out of four of these individuals (for which a DBS was available) had a positive DBS. This equated to 6.3% of ear samples and 1.8% of DBSs testing positive for TBEV-RNA. CONCLUSIONS: We provide the first evidence to our knowledge that TBEV-RNA can be detected in samples obtained non-destructively from naturally infected wild rodents, providing a viable sampling alternative suitable for longitudinal surveillance of the virus.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Carrapatos , Humanos , Animais , Roedores , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/veterinária , Encefalite Transmitida por Carrapatos/epidemiologia , Carrapatos/genética , Mamíferos/genética , RNA
7.
Viruses ; 15(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36851681

RESUMO

Seoul orthohantavirus (SEOV) is a rat-associated zoonotic pathogen with an almost worldwide distribution. In 2019, the first autochthonous human case of SEOV-induced hemorrhagic fever with renal syndrome was reported in Germany, and a pet rat was identified as the source of the zoonotic infection. To further investigate the SEOV reservoir, additional rats from the patient and another owner, all of which were purchased from the same vendor, were tested. SEOV RNA and anti-SEOV antibodies were found in both of the patient's rats and in two of the three rats belonging to the other owner. The complete coding sequences of the small (S), medium (M), and large (L) segments obtained from one rat per owner exhibited a high sequence similarity to SEOV strains of breeder rat or human origin from the Netherlands, France, the USA, and Great Britain. Serological screening of 490 rats from breeding facilities and 563 wild rats from Germany (2007-2020) as well as 594 wild rats from the Netherlands (2013-2021) revealed 1 and 6 seropositive individuals, respectively. However, SEOV RNA was not detected in any of these animals. Increased surveillance of pet, breeder, and wild rats is needed to identify the origin of the SEOV strain in Europe and to develop measures to prevent transmission to the human population.


Assuntos
Vírus Seoul , Zoonoses , Humanos , Animais , Ratos , Europa (Continente) , Cruzamento , Éxons , França , RNA , Vírus Seoul/genética
8.
Sci Rep ; 13(1): 2872, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36807371

RESUMO

Tick-borne encephalitis virus (TBEV) may cause tick-borne encephalitis (TBE), a potential life-threatening infection of the central nervous system in humans. Phylogenetically, TBEVs can be subdivided into three main subtypes, which differ in endemic region and pathogenic potential. In 2016, TBEV was first detected in the Netherlands. One of two detected strains, referred to as Salland, belonged to the TBEV-Eu subtype, yet diverged ≥ 2% on amino acid level from other members of this subtype. Here, we report the successful rescue of this strain using infectious subgenomic amplicons and its subsequent in vitro characterization by comparison to two well-characterized TBEV-Eu strains; Neudoerfl and Hypr. In the human alveolar epithelial cell line A549, growth kinetics of Salland were comparable to the high pathogenicity TBEV-Eu strain Hypr, and both strains grew considerably faster than the mildly pathogenic strain Neudoerfl. In the human neuroblastoma cell line SK-N-SH, Salland replicated faster and to higher infectious titers than both reference strains. All three TBEV strains infected primary human monocyte-derived dendritic cells to a similar extent and interacted with the type I interferon system in a similar manner. The current study serves as the first in vitro characterization of the novel, divergent TBEV-Eu strain Salland.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Países Baixos , Sistema Nervoso Central
9.
Transbound Emerg Dis ; 69(6): 3881-3895, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36404584

RESUMO

Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.


Assuntos
Infecções por Bartonella , Microbiota , Doenças dos Roedores , Animais , Ratos , RNA Ribossômico 16S/genética , Animais Selvagens , Bactérias/genética , Infecções por Bartonella/microbiologia , Infecções por Bartonella/veterinária , Microbiota/genética , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/microbiologia
10.
Emerg Infect Dis ; 28(12): 2416-2424, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36288572

RESUMO

Tick-borne encephalitis virus (TBEV) is an emerging pathogen that was first detected in ticks and humans in the Netherlands in 2015 (ticks) and 2016 (humans). To learn more about its distribution and prevalence in the Netherlands, we conducted large-scale surveillance in ticks and rodents during August 2018-September 2020. We tested 320 wild rodents and >46,000 ticks from 48 locations considered to be at high risk for TBEV circulation. We found TBEV RNA in 3 rodents (0.9%) and 7 tick pools (minimum infection rate 0.02%) from 5 geographically distinct foci. Phylogenetic analyses indicated that 3 different variants of the TBEV-Eu subtype circulate in the Netherlands, suggesting multiple independent introductions. Combined with recent human cases outside known TBEV hotspots, our data demonstrate that the distribution of TBEV in the Netherlands is more widespread than previously thought.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Animais , Humanos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Países Baixos/epidemiologia , Encefalite Transmitida por Carrapatos/epidemiologia , Filogenia
11.
J Wildl Dis ; 58(2): 404-408, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245369

RESUMO

Successful repopulation programs of Eurasian beavers (Castor fiber) have resulted in an increase in beaver populations throughout Europe. This may be of public health relevance because beavers can host multiple zoonotic pathogens. From March 2018 to March 2020, opportunistic testing of dead beavers was performed for hepatitis E virus, orthohantavirus, Anaplasma phagocytophilum, Bartonella spp., extended-spectrum-betalactamase or AmpC (ESBL/AmpC-)-producing Enterobacteriaceae, Francisella tularensis, Leptospira spp., Neoehrlichia mikurensis, Babesia spp., Echinococcus multilocularis, Toxoplasma gondii, and Trichinella spp. From the 24 beavers collected, three zoonotic pathogens were detected. One beaver was positive for T. gondii, one was positive for ESBL/AmpC-producing Enterobacteriaceae, and one was positive for N. mikurensis. The latter finding indicates that beavers can be bitten by Ixodes ricinus and be exposed to tick-borne pathogens. The detected ESBL/AmpC-gene was blaCMY-2 in an Escherichia coli ST6599. The findings suggest that the role of beavers in the spread of zoonotic diseases in the Netherlands is currently limited.


Assuntos
Anaplasma phagocytophilum , Anaplasmataceae , Ixodes , Animais , Países Baixos , Roedores
12.
Microorganisms ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677332

RESUMO

The European mole (Talpa europaea) has a widespread distribution throughout Europe. However, little is known about the presence of zoonotic pathogens in European moles. We therefore tested 180 moles from the middle and the south of the Netherlands by (q)PCR for the presence of multiple (tick-borne) zoonotic pathogens. Spotted fever Rickettsia was found in one (0.6%), Leptospira spp. in three (1.7%), Bartonella spp. in 69 (38.3%) and Hantaviridae in 89 (49.4%) of the 180 moles. Infections with Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis, Borrelia spp., Spiroplasma spp. and Francisella tularensis were not found. In addition, in a subset of 35 moles no antibodies against Tick-borne encephalitis virus were found. The obtained sequences of Bartonella spp. were closely related to Bartonella spp. sequences from moles in Spain and Hungary. The Hantaviridae were identified as the mole-borne Nova virus, with high sequence similarity to sequences from other European countries, and Bruges virus. Though the zoonotic risk from moles appears limited, our results indicate that these animals do play a role in multiple host-pathogen cycles.

13.
Viruses ; 13(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208752

RESUMO

Serological assays, such as the enzyme-linked immunosorbent assay (ELISA), are popular tools for establishing the seroprevalence of various infectious diseases in humans and animals. In the ELISA, the optical density is measured and gives an indication of the antibody level. However, there is variability in optical density values for individuals that have been exposed to the pathogen of interest, as well as individuals that have not been exposed. In general, the distribution of values that can be expected for these two categories partly overlap. Often, a cut-off value is determined to decide which individuals should be considered seropositive or seronegative. However, the classical cut-off approach based on a putative threshold ignores heterogeneity in immune response in the population and is thus not the optimal solution for the analysis of serological data. A binary mixture model does include this heterogeneity, offers measures of uncertainty and the direct estimation of seroprevalence without the need for correction based on sensitivity and specificity. Furthermore, the probability of being seropositive can be estimated for individual samples, and both continuous and categorical covariates (risk-factors) can be included in the analysis. Using ELISA results from rats tested for the Seoul orthohantavirus, we compared the classical cut-off method with a binary mixture model set in a Bayesian framework. We show that it performs similarly or better than cut-off methods, by comparing with real-time quantitative polymerase chain reaction (RT-qPCR) results. We therefore recommend binary mixture models as an analysis tool over classical cut-off methods. An example code is included to facilitate the practical use of binary mixture models in everyday practice.


Assuntos
Teorema de Bayes , Análise de Dados , Ensaio de Imunoadsorção Enzimática/métodos , Vírus Seoul/imunologia , Animais , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Ratos , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e Especificidade , Vírus Seoul/genética , Estudos Soroepidemiológicos
14.
Viruses ; 13(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801789

RESUMO

Seoul virus (SEOV) is a zoonotic orthohantavirus carried by rats. In humans, SEOV can cause hemorrhagic fever with renal syndrome. Recent human SEOV cases described in the USA, United Kingdom, France and the Netherlands were associated with contact with pet or feeder rats. The prevalence of SEOV in these types of rats is unknown. We collected 175 pet and feeder rats (Rattus norvegicus) from private owners, ratteries and commercial breeders/traders in the Netherlands. Lung tissue of the rats was tested using a SEOV real-time RT-qPCR and heart fluid was tested for the presence of antibodies against SEOV. In all three investigated groups, RT-qPCR-positive rats were found: in 1/29 rats from private owners (3.6%), 2/56 rats from ratteries (3.4%) and 11/90 rats from commercial breeders (12.2%). The seroprevalence was largely similar to the prevalence calculated from RT-qPCR-positive rats. The SEOV sequences found were highly similar to sequences previously found in domesticated rats in Europe. In conclusion, SEOV is spread throughout different populations of domesticated rats.


Assuntos
Febre Hemorrágica com Síndrome Renal/epidemiologia , Doenças dos Roedores/epidemiologia , Vírus Seoul/isolamento & purificação , Animais , Febre Hemorrágica com Síndrome Renal/transmissão , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Técnicas de Diagnóstico Molecular , Países Baixos/epidemiologia , Animais de Estimação/virologia , Prevalência , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Roedores/virologia , Vírus Seoul/genética , Estudos Soroepidemiológicos , Inquéritos e Questionários , Carga Viral
15.
Front Cell Infect Microbiol ; 10: 580478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415084

RESUMO

Orthohantaviruses (family Hantaviridae, order Bunyavirales) can cause two serious syndromes in humans: hemorrhagic fever with renal syndrome (HFRS), associated with the Old World orthohantaviruses, and hantavirus cardiopulmonary syndrome (HCPS), associated with orthohantaviruses in the Americas. In Europe, four different orthohantaviruses (DOBV, PUUV, SEOV, and TULV) are associated with human disease. As disease severity and zoonotic source differ between orthohantavirus species, conclusive determination of the infecting species by either RT-PCR or comparative virus neutralization test (VNT) is of importance. Currently, the focus reduction neutralization test (FRNT) is considered the 'Gold Standard' for orthohantavirus VNTs, however this test is laborious and time-consuming. Consequently, more high-throughput alternatives are needed. In this study, we developed a comparative orthohantavirus microneutralization test (MNT) including all four human pathogenic orthohantavirus species circulating in Europe. The assay was validated using RT-PCR-confirmed rodent (n=17) and human sera (n=17), DOBV-suspected human sera (n=3) and cohorts of orthohantavirus-negative rodent (n=3) and human sera (n=85). 16/17 RT-PCR-confirmed rodent sera and 18/20 of the RT-PCR-confirmed and DOBV-suspected human sera were serotyped successfully, while for the remaining rodent (n=1) and human sera (n=2) no neutralizing titers could be detected. All negative control sera tested negative in the MNT. The assay was subsequently evaluated using a clinical cohort of 50 orthohantavirus patients. Orthohantavirus infection was confirmed in all 50 patients, and 47/50 (94%) sera were serotyped successfully, confirming PUUV as the major cause of orthohantavirus infections in Netherlands. Notably, two previously unrecognized SEOV cases from 2013 were diagnosed using the MNT, underlining the added value of the MNT in a diagnostic setting. In conclusion, we demonstrate the successful development and clinical implementation of a comparative European orthohantavirus MNT to determine the infecting virus species in European HFRS patients. Identification of the causative species is needed for an adequate Public Health response and can support individual patient care. For many labs, the implementation of orthohantavirus neutralization tests has not been a straightforward procedure. This issue will be addressed by the rollout of the comparative MNT to multiple European laboratories to support patient diagnostics, surveillance and Public Health responses.


Assuntos
Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Anticorpos Antivirais , Europa (Continente) , Orthohantavírus/genética , Humanos , Países Baixos
16.
J Clin Microbiol ; 58(1)2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31619523

RESUMO

Members of the genus Bartonella are fastidious Gram-negative facultative intracellular bacteria that are typically transmitted by arthropod vectors. Several Bartonella spp. have been found to cause culture-negative endocarditis in humans. Here, we report the case of a 75-year-old German woman with prosthetic valve endocarditis due to Bartonella washoensis The infecting agent was characterized by sequencing of six housekeeping genes (16S rRNA, ftsZ, gltA, groEL, ribC, and rpoB), applying a multilocus sequence typing (MLST) approach. The 5,097 bp of the concatenated housekeeping gene sequence from the patient were 99.0% identical to a sequence from a B. washoensis strain isolated from a red squirrel (Sciurus vulgarisorientis) from China. A total of 39% (24/62) of red squirrel (S. vulgaris) samples from the Netherlands were positive for the B. washoensisgltA gene variant detected in the patient. This suggests that the red squirrel is the reservoir host for human infection in Europe.


Assuntos
Doenças dos Animais/microbiologia , Infecções por Bartonella/diagnóstico , Infecções por Bartonella/microbiologia , Bartonella , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/microbiologia , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/microbiologia , Idoso , Animais , Bartonella/classificação , Bartonella/genética , Infecções por Bartonella/transmissão , DNA Bacteriano , Reservatórios de Doenças , Endocardite Bacteriana/transmissão , Europa (Continente) , Feminino , Humanos , Masculino , Filogenia , Filogeografia , RNA Ribossômico 16S/genética , Sciuridae/microbiologia
17.
Viruses ; 11(6)2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181690

RESUMO

Seoul virus (SEOV) is a zoonotic orthohantavirus carried by black and brown rats, and can cause hemorrhagic fever with renal syndrome in humans. Human cases of SEOV virus infection have most recently been reported in the USA, United Kingdom, France and the Netherlands and were primarily associated with contact with pet rats and feeder rats. Infection of rats results in an asymptomatic but persistent infection. Little is known about the cell tropism of SEOV in its reservoir and most available data is based on experimental infection studies in which rats were inoculated via a route which does not recapitulate virus transmission in nature. Here we report the histopathological analysis of SEOV cell tropism in key target organs following natural infection of a cohort of feeder rats, comprising 19 adults and 11 juveniles. All adult rats in this study were positive for SEOV specific antibodies and viral RNA in their tissues. One juvenile rat was seropositive, but negative in the rRT-PCR. Of the 19 adult rats of which subsequently additional organs were tested, SEOV RNA was detected in all lungs, followed by kidney (79%) and liver (74%). Histopathologic changes associated with SEOV infection were primarily found in the liver, consistent with a pathological diagnosis of a mild hepatitis. In conclusion, natural SEOV infection results in mild inflammation of the liver in the absence of clinical disease.


Assuntos
Febre Hemorrágica com Síndrome Renal/patologia , Febre Hemorrágica com Síndrome Renal/virologia , Vírus Seoul/patogenicidade , Tropismo , Animais , França , Febre Hemorrágica com Síndrome Renal/diagnóstico , Humanos , Inflamação , Rim/patologia , Rim/virologia , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Reação em Cadeia da Polimerase , RNA Viral/genética , Ratos , Vírus Seoul/genética , Reino Unido , Estados Unidos
18.
Emerg Infect Dis ; 25(2): 342-345, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30666954

RESUMO

To increase knowledge of tick-borne encephalitis virus (TBEV) circulation in the Netherlands, we conducted serosurveillance in roe deer (Capreolus capreolus) during 2017 and compared results with those obtained during 2010. Results corroborate a more widespread occurrence of the virus in 2017. Additional precautionary public health measures have been taken.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/imunologia , Anticorpos Antivirais/imunologia , Cervos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/veterinária , Doenças dos Animais/transmissão , Doenças dos Animais/virologia , Animais , Ensaio de Imunoadsorção Enzimática , Geografia Médica , Países Baixos/epidemiologia , Razão de Chances , Vigilância em Saúde Pública , Estudos Soroepidemiológicos , Infestações por Carrapato
19.
Ticks Tick Borne Dis ; 10(1): 176-179, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385073

RESUMO

Recently, tick-borne encephalitis virus (TBEV) was detected in the Netherlands for the first time, in ticks collected in 2015 in the National Park Sallandse heuvelrug in response to the detection of anti-TBEV antibodies in roe deer. Hereafter, two human cases of autochthonous TBE have been reported, occurring in 2016. One case was geographically linked to the area of the previously reported ticks, which harbored a genetically divergent TBEV-Eu strain variant (TBEV-NL). So far these are the few reported events that point to endemic transmission of TBEV in the Netherlands and the true prevalence of TBEV and TBE disease in the Netherlands and its impact on the human population remains to be determined. We describe the third human case, identified in 2017, which geographically clusters with the aforementioned case and TBEV-positive ticks. We also describe the identification of another TBEV-NL-positive tick in the Netherlands, collected 2 years after the initial find in that same region (in 2017). These observations support the concept of continued circulation of TBEV-NL and the presence of a possible TBEV hot spot in the Sallandse Heuvelrug region.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Cervos/virologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/epidemiologia , Variação Genética , Animais , Análise por Conglomerados , Doenças Transmissíveis Emergentes/virologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Zoonoses
20.
Emerg Infect Dis ; 24(12): 2158-2163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067176

RESUMO

Orthohantaviruses are a group of rodentborne viruses with a worldwide distribution. The orthohantavirus Seoul virus (SEOV) can cause hemorrhagic fever with renal syndrome in humans and is distributed worldwide, like its reservoir host, the rat. Cases of SEOV in wild and pet rats have been described in several countries, and human cases have been reported in the United Kingdom, France, Canada, and the United States. In the Netherlands, SEOV has previously been found in wild brown rats. We describe an autochthonous human case of SEOV infection in the Netherlands. This patient had nonspecific clinical symptoms of an orthohantavirus infection (gastrointestinal symptoms and distinct elevation of liver enzymes). Subsequent source investigation revealed 2 potential sources, the patient's feeder rats and a feeder rat farm. At both sources, a high prevalence of SEOV was found in the rats. The virus closely resembled the Cherwell and Turckheim SEOV strains that were previously found in Europe.


Assuntos
Febre Hemorrágica com Síndrome Renal/virologia , Ratos/virologia , Vírus Seoul , Adulto , Animais , Febre Hemorrágica com Síndrome Renal/diagnóstico , Febre Hemorrágica com Síndrome Renal/etiologia , Humanos , Masculino , Países Baixos , Vírus Seoul/classificação , Vírus Seoul/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...