Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928259

RESUMO

Oncolytic adenoviruses are in development as immunotherapeutic agents for solid tumors. Their efficacy is in part dependent on their ability to replicate in tumors. It is, however, difficult to obtain evidence for intratumoral oncolytic adenovirus replication if direct access to the tumor is not possible. Detection of systemic adenovirus DNA, which is sometimes used as a proxy, has limited value because it does not distinguish between the product of intratumoral replication and injected virus that did not replicate. Therefore, we investigated if detection of virus-associated RNA (VA RNA) by RT-qPCR on liquid biopsies could be used as an alternative. We found that VA RNA is expressed in adenovirus-infected cells in a replication-dependent manner and is secreted by these cells in association with extracellular vesicles. This allowed VA RNA detection in the peripheral blood of a preclinical in vivo model carrying adenovirus-injected human tumors and on liquid biopsies from a human clinical trial. Our results confirm that VA RNA detection in liquid biopsies can be used for minimally invasive assessment of oncolytic adenovirus replication in solid tumors in vivo.


Assuntos
Adenoviridae , Terapia Viral Oncolítica , Vírus Oncolíticos , RNA Viral , Replicação Viral , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , RNA Viral/genética , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Terapia Viral Oncolítica/métodos , Camundongos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/genética , Feminino
2.
Front Mol Biosci ; 7: 554649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282910

RESUMO

Introduction: Glioma cells exert influence over the tumor-microenvironment in part through the release of extracellular vesicles (EVs), membrane-enclosed structures containing proteins, lipids, and RNAs. In this study, we evaluated the function of Ras-associated protein 27a (Rab27a) in glioma and evaluated the feasibility of assessing its role in EV release in glioma cells in vitro and in vivo. Methods: Rab27a was knocked down via a short hairpin RNA (shRNA) stably expressed in mouse glioma cell line GL261, with a scrambled shRNA as control. EVs were isolated by ultracentrifugation and quantified with Nanoparticle Tracking Analysis (NTA) and Tunable Resistive Pulse Sensing (TRPS). CellTiter-Glo viability assays and cytokine arrays were used to evaluate the impact of Rab27a knockdown. GL261.shRab27a cells and GL261.shControl were implanted into the left striatum of eight mice to assess tumor growth and changes in the tumor microenvironment. Results: Knockdown of Rab27a in GL261 glioma cells decreased the release of small EVs isolated at 100,000 × g in vitro (p = 0.005), but not the release of larger EVs, isolated at 10,000 × g. GL261.shRab27a cells were less viable compared to the scramble control in vitro (p < 0.005). A significant increase in CCL2 expression in shRab27a GL261 cells was also observed (p < 0.001). However, in vivo there was no difference in tumor growth or overall survival between the two groups, while shRab27a tumors showed lower proliferation at the tumor borders. Decreased infiltration of IBA1 positive macrophages and microglia, but not FoxP3 positive regulatory T cells was observed. Conclusion: Rab27a plays an important role in the release of small EVs from glioma cells, and also in their viability and expression of CCL2 in vitro. As interference in Rab27a expression influences glioma cell viability and expression profiles, future studies should be cautious in using the knockdown of Rab27a as a means of studying the role of small EVs in glioma growth.

3.
Cancers (Basel) ; 12(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171819

RESUMO

Background: In glioblastoma (GB), tissue is required for accurate diagnosis and subtyping. Tissue can be obtained through resection or (stereotactic) biopsy, but these invasive procedures provide risks for patients. Extracellular vesicles (EVs) are small, cell-derived vesicles that contain miRNAs, proteins, and lipids, and possible candidates for liquid biopsies. GB-derived EVs can be found in the blood of patients, but it is difficult to distinguish them from circulating non-tumor EVs. 5-aminolevulinic acid (5-ALA) is orally administered to GB patients to facilitate tumor visualization and maximal resection, as it is metabolized to fluorescent protoporphyrin IX (PpIX) that accumulates in glioma cells. In this study, we assessed whether PpIX accumulates in GB-derived EVs and whether these EVs could be isolated and characterized to enable a liquid biopsy in GB. Methods: EVs were isolated from the conditioned media of U87 cells treated with 5-ALA by differential ultracentrifugation. Blood samples were collected and processed from healthy controls and patients undergoing 5-ALA guided surgery for GB. High-resolution flow cytometry (hFC) enabled detection and sorting of PpIX-positive EVs, which were subsequently analyzed by digital droplet PCR (ddPCR). Results: PpIX-positive EVs could be detected in conditioned cell culture media as well as in patient samples after administration of 5-ALA. By using hFC, we could sort the PpIX-positive EVs for further analysis with ddPCR, which indicated the presence of EVs and GB-associated miRNAs. Conclusion: GB-derived EVs can be isolated from the plasma of GB patients by using 5-ALA induced fluorescence. Although many challenges remain, our findings show new possibilities for the development of blood-based liquid biopsies in GB patients.

4.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824188

RESUMO

Reporter genes are used to visualize intracellular biological phenomena, including viral infection. Here we demonstrate bioluminescent imaging of viral infection using the NanoBiT system in combination with intraperitoneal injection of a furimazine analogue, hydrofurimazine. This recently developed substrate has enhanced aqueous solubility allowing delivery of higher doses for in vivo imaging. The small high-affinity peptide tag (HiBiT), which is only 11 amino-acids in length, was engineered into a clinically used oncolytic adenovirus, and the complementary large protein (LgBiT) was constitutively expressed in tumor cells. Infection of the LgBiT expressing cells with the HiBiT oncolytic virus will reconstitute NanoLuc in the cytosol of the cell, providing strong bioluminescence upon treatment with substrate. This new bioluminescent system served as an early stage quantitative viral transduction reporter in vitro and also in vivo in mice, for longitudinal monitoring of oncolytic viral persistence in infected tumor cells. This platform provides novel opportunities for studying the biology of viruses in animal models.


Assuntos
Furanos/farmacocinética , Imidazóis/farmacocinética , Substâncias Luminescentes/farmacocinética , Proteínas Luminescentes/genética , Imagem Óptica/métodos , Pirazinas/farmacocinética , Viroses/diagnóstico por imagem , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Furanos/administração & dosagem , Células HEK293 , Humanos , Imidazóis/administração & dosagem , Injeções Intraperitoneais , Substâncias Luminescentes/administração & dosagem , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Vírus Oncolíticos/genética , Pirazinas/administração & dosagem , Proteínas Recombinantes/genética
5.
Sci Rep ; 7(1): 17654, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247249

RESUMO

The mammalian orthoreovirus Type 3 Dearing has great potential as oncolytic agent in cancer therapy. One of the bottlenecks that hampers its antitumour efficacy in vivo is the limited tumour-cell infection and intratumoural distribution. This necessitates strategies to improve tumour penetration. In this study we employ the baculovirus Autographa californica multiple nucleopolyhedrovirus as a tool to expand the reovirus' tropism and to improve its spread in three-dimensional tumour-cell spheroids. We generated a recombinant baculovirus expressing the cellular receptor for reovirus, the Junction Adhesion Molecule-A, on its envelope. Combining these Junction Adhesion Molecule-A-expressing baculoviruses with reovirus particles leads to the formation of biviral complexes. Exposure of the reovirus-resistant glioblastoma cell line U-118 MG to the baculovirus-reovirus complexes results in efficient reovirus infection, high reovirus yields, and significant reovirus-induced cytopathic effects. As compared to the reovirus-only incubations, the biviral complexes demonstrated improved penetration and increased cell killing of three-dimensional U-118 MG tumour spheroids. Our data demonstrate that reovirus can be delivered with increased efficiency into two- and three-dimensional tumour-cell cultures via coupling the reovirus particles to baculovirus. The identification of baculovirus' capacity to penetrate into tumour tissue opens novel opportunities to improve cancer therapy by improved delivery of oncolytic viruses into tumours.


Assuntos
Glioma/virologia , Orthoreovirus Mamífero 3/fisiologia , Nucleopoliedrovírus/fisiologia , Terapia Viral Oncolítica , Infecções por Reoviridae/imunologia , Animais , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Glioma/patologia , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Esferoides Celulares/patologia , Spodoptera , Carga Viral , Tropismo Viral
6.
Mol Ther Oncolytics ; 5: 11-19, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28480325

RESUMO

The conditionally replicating oncolytic adenovirus Delta24-RGD (Ad) is currently under investigation in clinical trials for glioblastoma, including in combination with temozolomide (TMZ), the standard chemotherapy for this tumor. Previously, we showed that the efficacy of Delta24-RGD in a murine model is primarily dependent on the virus-induced anti-tumor immune response. As observed with most chemotherapies, TMZ has pronounced immune-modulating effects. Here, we studied the combined effects of these treatments in a murine glioma model. In vitro, we observed a synergistic activity between Delta24-RGD and TMZ. In vivo, C57BL/6 mice bearing intracranial GL261 tumors were treated with TMZ for 5 days either prior to intratumoral Delta24-RGD injection (TMZ/Ad) or post virus injection (Ad/TMZ). Notably, the Ad/TMZ regimen led to similar tumoral CD8+ T cell influx as the virus-only treatment, but increased the ability of CD8+ T cells to specifically recognize the tumor cells. This was accompanied by improved survival. The TMZ/Ad regimen also improved survival significantly compared to controls, but not compared to virus alone. In this group, the influx of dendritic cells is impaired, followed by a significantly lower number of tumor-infiltrating CD8+ T cells and no recognition of tumor cells. Depletion of either CD4+ T cells or CD8+ T cells impaired the efficacy of Delta24-RGD, underscoring the role of these cells in therapeutic activity of the virus. Overall, we show that the addition of TMZ to Delta24-RGD treatment leads to a significant increase in survival and that the order of sequence of these treatments affects the CD8+T cell anti-tumor activity.

7.
Methods Mol Biol ; 1545: 21-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27943204

RESUMO

Accurate characterization of extracellular vesicles (EVs), including exosomes and microvesicles, is essential to obtain further knowledge on the biological relevance of EVs. Tunable resistive pulse sensing (tRPS) has shown promise as a method for single particle-based quantification and size profiling of EVs. Here, we describe the technical background of tRPS and its applications for EV characterization. Besides the standard protocol, we describe an alternative protocol, in which samples are spiked with polystyrene beads of known size and concentration. This alternative protocol can be used to overcome some of the challenges of direct EV characterization in biological fluids.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Tamanho da Partícula
8.
J Extracell Vesicles ; 5: 31242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27680301

RESUMO

BACKGROUND: Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. MATERIALS AND METHODS: A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. RESULTS: PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. CONCLUSION: The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.

9.
PLoS One ; 10(5): e0127058, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993039

RESUMO

BACKGROUND: A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvß3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi) affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC), and we determined the most effective HDACi. METHODS: SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvß3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness. RESULTS: Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvß3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes. CONCLUSION: LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti-tumor activity in a subset of GSCs. Both HDACi moderately augmented viral infection and late gene expression, but slightly reduced progeny production. The drugs differentially activated multiple cell death pathways. The limited toxicity on astrocytes supports further evaluation of the proposed combination therapies.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hidroxilaminas/farmacologia , Indóis/farmacologia , Vírus Oncolíticos , Quinolinas/farmacologia , Adenoviridae/genética , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Sobrevivência Celular , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Integrina alfaVbeta3/metabolismo , Camundongos , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Terapia Viral Oncolítica , Panobinostat , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Cancer ; 137(7): 1630-42, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802036

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain tumor and is without exception lethal. GBMs modify the immune system, which contributes to the aggressive nature of the disease. Particularly, cells of the monocytic lineage, including monocytes, macrophages and microglia, are affected. We investigated the influence of GBM-derived extracellular vesicles (EVs) on the phenotype of monocytic cells. Proteomic profiling showed GBM EVs to be enriched with proteins functioning in extracellular matrix interaction and leukocyte migration. GBM EVs appeared to skew the differentiation of peripheral blood-derived monocytes to alternatively activated/M2-type macrophages. This was observed for EVs from an established cell line, as well as for EVs from primary cultures of GBM stem-like cells (GSCs). Unlike EVs of non-GBM origin, GBM EVs induced modified expression of cell surface proteins, modified cytokine secretion (e.g., an increase in vascular endothelial growth factor and IL-6) and increased phagocytic capacity of the macrophages. Most pronounced effects were observed upon incubation with EVs from mesenchymal GSCs. GSC EVs also affected primary human microglia, resulting in increased expression of Membrane type 1-matrix metalloproteinase, a marker for GBM microglia and functioning as tumor-supportive factor. In conclusion, GBM-derived EVs can modify cells of the monocytic lineage, which acquire characteristics that resemble the tumor-supportive phenotypes observed in patients.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Leucócitos Mononucleares/patologia , Neoplasias Encefálicas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Exossomos/metabolismo , Exossomos/patologia , Glioblastoma/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Fenótipo
11.
J Control Release ; 200: 87-96, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25555362

RESUMO

Nano-sized extracelullar vesicles (EVs) released by various cell types play important roles in a plethora of (patho)physiological processes and are increasingly recognized as biomarkers for disease. In addition, engineered EV and EV-inspired liposomes hold great potential as drug delivery systems. Major technologies developed for high-throughput analysis of individual EV include nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (tRPS) and high-resolution flow cytometry (hFC). Currently, there is a need for comparative studies on the available technologies to improve standardization of vesicle analysis in diagnostic or therapeutic settings. We investigated the possibilities, limitations and comparability of NTA, tRPS and hFC for analysis of tumor cell-derived EVs and synthetic mimics (i.e. differently sized liposomes). NTA and tRPS instrument settings were identified that significantly affected the quantification of these particles. Furthermore, we detailed the differences in absolute quantification of EVs and liposomes using the three technologies. This study increases our understanding of possibilities and pitfalls of NTA, tRPS and hFC, which will benefit standardized and large-scale clinical application of (engineered) EVs and EV-mimics in the future.


Assuntos
Exossomos , Lipossomos/análise , Nanopartículas/análise , Materiais Biomiméticos , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos
12.
J Vis Exp ; (92): e51623, 2014 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-25350417

RESUMO

Extracellular vesicles (EVs), including 'microvesicles' and 'exosomes', are highly abundant in bodily fluids. Recent years have witnessed a tremendous increase in interest in EVs. EVs have been shown to play important roles in various physiological and pathological processes, including coagulation, immune responses, and cancer. In addition, EVs have potential as therapeutic agents, for instance as drug delivery vehicles or as regenerative medicine. Because of their small size (50 to 1,000 nm) accurate quantification and size profiling of EVs is technically challenging. This protocol describes how tunable resistive pulse sensing (tRPS) technology, using the qNano system, can be used to determine the concentration and size of EVs. The method, which relies on the detection of EVs upon their transfer through a nano sized pore, is relatively fast, suffices the use of small sample volumes and does not require the purification and concentration of EVs. Next to the regular operation protocol an alternative approach is described using samples spiked with polystyrene beads of known size and concentration. This real-time calibration technique can be used to overcome technical hurdles encountered when measuring EVs directly in biological fluids.


Assuntos
Micropartículas Derivadas de Células/química , Exossomos/química , Líquido Extracelular/química , Glioblastoma/química , Glioblastoma/patologia , Humanos , Nanopartículas/química , Nanotecnologia/métodos , Células Tumorais Cultivadas
13.
Viruses ; 6(8): 3080-96, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25118638

RESUMO

Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs), which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC) line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC)-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007). Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.


Assuntos
Adenoviridae/fisiologia , Terapia Biológica/métodos , Sistemas de Liberação de Medicamentos/métodos , Glioma/terapia , Vírus Oncolíticos/fisiologia , Linfócitos T/virologia , Adenoviridae/crescimento & desenvolvimento , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Glioma/virologia , Humanos , Camundongos , Vírus Oncolíticos/crescimento & desenvolvimento , Análise de Sobrevida , Resultado do Tratamento
14.
Nanomedicine (Lond) ; 8(9): 1443-58, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23384702

RESUMO

BACKGROUND: Cells secrete different types of membrane vesicles (MVs), which may act as important entities in normal human physiology and in various pathological processes. The established methods for quantification of MVs require purification or preanalytical handling of samples with labeling moieties. AIM: The authors' aim was to develop a method for high-throughput, labeling-free quantification of nonpurified MVs. MATERIALS & METHODS: Scanning ion occlusion sensing technology, which relies on the detection of particles upon their movement through a nanopore, was investigated for the ability to quantify nanosized MVs (<400 nm) in bodily fluids and cell culture supernatants. RESULTS: Scanning ion occlusion sensing allowed for rapid and easy measurement of the concentration of MVs in all biological fluids tested. CONCLUSION: Scanning ion occlusion sensing technology enables the quantification of MVs in biological samples without the requirement of MV isolation and/or labeling. This offers a highly valuable addition to the currently used repertoire of MV quantification methods.


Assuntos
Membranas/química , Nanoporos , Vesículas Secretórias/química , Transporte Biológico , Líquidos Corporais/química , Humanos , Íons , Membranas/metabolismo , Tamanho da Partícula , Vesículas Secretórias/metabolismo
15.
Ned Tijdschr Geneeskd ; 155(51): A3677, 2011.
Artigo em Holandês | MEDLINE | ID: mdl-22200143

RESUMO

Exosomes are a subtype of vesicles released by cells of both healthy and neoplastic origin. Preclinical studies suggest a role for tumour-derived exosomes in tumour progression, mainly through the transfer of RNA and proteins from tumour cells to other cells. The transfer of RNA and proteins by tumour-derived exosomes seems to mediate stimulation of angiogenesis and suppression of immune cells; in contrast, exosomes from healthy cells of the immune system appear to have anti-tumour characteristics. Characterisation of the RNA or protein profile of tumour-derived exosomes could have diagnostic or prognostic value, for example, in brain tumours. Anti-tumour therapies could be based on exosomes, for example, by blocking the formation of tumour-derived exosomes or having exosomes release therapeutic agents at specific sites. The most advanced application of this is the use of exosomes from dendritic cells in tumour vaccination; the safety of this has been demonstrated in phase I studies.


Assuntos
Vacinas Anticâncer/imunologia , Exossomos/imunologia , Exossomos/fisiologia , Neoplasias/imunologia , Transdução de Sinais , Antígenos de Neoplasias/imunologia , Células Dendríticas/imunologia , Humanos , Proteínas de Neoplasias/isolamento & purificação
16.
Virol J ; 8: 162, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21477385

RESUMO

BACKGROUND: The survival of glioma patients with the current treatments is poor. Early clinical trails with replicating adenoviruses demonstrated the feasibility and safety of the use of adenoviruses as oncolytic agents. Antitumor efficacy has been moderate due to inefficient virus replication and spread. Previous studies have shown that truncation of the adenovirus i-leader open reading frame enhanced cytopathic activity of HAdV-5 in several tumor cell lines. Here we report the effect of an i-leader mutation on the cytopathic activity in glioma cell lines and in primary high-grade glioma cell cultures. RESULTS: A mutation truncating the i-leader open reading frame was created in a molecular clone of replication-competent wild-type HAdV-5 by site-directed mutagenesis. We analyzed the cytopathic activity of this RL-07 mutant virus. A cell-viability assay showed increased cytopathic activity of the RL-07 mutant virus on U251 and SNB19 glioma cell lines. The plaque sizes of RL-07 on U251 monolayers were seven times larger than those of isogenic control viruses. Similarly, the cytopathic activity of the RL-07 viruses was strongly increased in six primary high-grade glioma cell cultures. In glioma cell lines the RL-07 virus was found to be released earlier into the culture medium. This was not due to enhanced viral protein synthesis, as was evident from equivalent E1A, Fiber and Adenovirus Death Protein amounts, nor to higher virus yields. CONCLUSION: The cytopathic activity of replicating adenovirus in glioblastoma cells is increased by truncating the i-leader open reading frame. Such mutations may help enhancing the antitumor cytopathic efficacy of oncolytic adenoviruses in the treatment of glioblastoma.


Assuntos
Regiões 5' não Traduzidas , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/fisiologia , Glioma/virologia , Fases de Leitura Aberta , Deleção de Sequência , Liberação de Vírus , Adenovírus Humanos/genética , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Mutação
17.
Nucleic Acids Res ; 39(5): e30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21138963

RESUMO

Adenoviruses (Ads) are the most frequently used viruses for oncolytic and gene therapy purposes. Most Ad-based vectors have been generated through rational design. Although this led to significant vector improvements, it is often hampered by an insufficient understanding of Ad's intricate functions and interactions. Here, to evade this issue, we adopted a novel, mutator Ad polymerase-based, 'accelerated-evolution' approach that can serve as general method to generate or optimize adenoviral vectors. First, we site specifically substituted Ad polymerase residues located in either the nucleotide binding pocket or the exonuclease domain. This yielded several polymerase mutants that, while fully supportive of viral replication, increased Ad's intrinsic mutation rate. Mutator activities of these mutants were revealed by performing deep sequencing on pools of replicated viruses. The strongest identified mutators carried replacements of residues implicated in ssDNA binding at the exonuclease active site. Next, we exploited these mutators to generate the genetic diversity required for directed Ad evolution. Using this new forward genetics approach, we isolated viral mutants with improved cytolytic activity. These mutants revealed a common mutation in a splice acceptor site preceding the gene for the adenovirus death protein (ADP). Accordingly, the isolated viruses showed high and untimely expression of ADP, correlating with a severe deregulation of E3 transcript splicing.


Assuntos
Adenoviridae/genética , DNA Polimerase Dirigida por DNA/genética , Evolução Molecular Direcionada/métodos , Vírus Oncolíticos/genética , Proteínas Virais/genética , Adenoviridae/enzimologia , Proteínas E3 de Adenovirus/genética , Proteínas E3 de Adenovirus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/química , Vetores Genéticos , Humanos , Dados de Sequência Molecular , Mutação , Splicing de RNA , Replicação Viral
18.
Virology ; 410(1): 192-200, 2011 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-21130482

RESUMO

In human adenoviruses (HAdV), 240 copies of the 14.3-kDa minor capsid protein IX stabilize the capsid. Three N-terminal domains of protein IX form triskelions between hexon capsomers. The C-terminal domains of four protein IX monomers associate near the facet periphery. The precise biological role of protein IX remains enigmatic. Here we show that deletion of the protein IX gene from a HAdV-5 vector enhanced the reporter gene delivery 5 to 25-fold, specifically to Coxsackie and Adenovirus Receptor (CAR)-negative cell lines. Deletion of the protein IX gene also resulted in enhanced activation of peripheral blood mononuclear cells. The mechanism for the enhanced transduction is obscure. No differences in fiber loading, integrin-dependency of transduction, or factor-X binding could be established between protein IX-containing and protein IX-deficient particles. Our data suggest that protein IX can affect the cell tropism of HAdV-5, and may function to dampen the innate immune responses against HAdV particles.


Assuntos
Adenovírus Humanos/metabolismo , Proteínas do Capsídeo/genética , Receptores Virais/genética , Adenovírus Humanos/genética , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Deleção de Genes , Técnicas de Transferência de Genes , Humanos , Integrinas/metabolismo , Fígado/metabolismo , Camundongos , Receptores Virais/metabolismo , Replicação Viral
19.
Hum Gene Ther ; 21(7): 795-805, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19947826

RESUMO

Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.


Assuntos
Adenoviridae/genética , Terapia Genética , Vetores Genéticos/genética , Neoplasias da Próstata/terapia , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Masculino
20.
Hum Gene Ther ; 21(7): 807-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20001452

RESUMO

Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Neoplasias da Próstata/terapia , Terapia Genética/tendências , Humanos , Masculino , Estadiamento de Neoplasias , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...