Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1885, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019905

RESUMO

Proteins often undergo large conformational changes when binding small molecules, but atomic-level descriptions of such events have been elusive. Here, we report unguided molecular dynamics simulations of Abl kinase binding to the cancer drug imatinib. In the simulations, imatinib first selectively engages Abl kinase in its autoinhibitory conformation. Consistent with inferences drawn from previous experimental studies, imatinib then induces a large conformational change of the protein to reach a bound complex that closely resembles published crystal structures. Moreover, the simulations reveal a surprising local structural instability in the C-terminal lobe of Abl kinase during binding. The unstable region includes a number of residues that, when mutated, confer imatinib resistance by an unknown mechanism. Based on the simulations, NMR spectra, hydrogen-deuterium exchange measurements, and thermostability measurements and estimates, we suggest that these mutations confer imatinib resistance by exacerbating structural instability in the C-terminal lobe, rendering the imatinib-bound state energetically unfavorable.


Assuntos
Antineoplásicos , Piperazinas , Mesilato de Imatinib , Piperazinas/farmacologia , Pirimidinas/farmacologia , Benzamidas , Antineoplásicos/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl
2.
PLoS Comput Biol ; 16(4): e1007394, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275713

RESUMO

The development of novel analgesics with improved safety profiles to combat the opioid epidemic represents a central question to G protein coupled receptor structural biology and pharmacology: What chemical features dictate G protein or ß-arrestin signaling? Here we use adaptively biased molecular dynamics simulations to determine how fentanyl, a potent ß-arrestin biased agonist, binds the µ-opioid receptor (µOR). The resulting fentanyl-bound pose provides rational insight into a wealth of historical structure-activity-relationship on its chemical scaffold. Following an in-silico derived hypothesis we found that fentanyl and the synthetic opioid peptide DAMGO require M153 to induce ß-arrestin coupling, while M153 was dispensable for G protein coupling. We propose and validate an activation mechanism where the n-aniline ring of fentanyl mediates µOR ß-arrestin through a novel M153 "microswitch" by synthesizing fentanyl-based derivatives that exhibit complete, clinically desirable, G protein biased coupling. Together, these results provide molecular insight into fentanyl mediated ß-arrestin biased signaling and a rational framework for further optimization of fentanyl-based analgesics with improved safety profiles.


Assuntos
Fentanila/farmacologia , beta-Arrestinas/metabolismo , beta-Arrestinas/ultraestrutura , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Fentanila/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , beta-Arrestinas/agonistas
3.
Nat Commun ; 11(1): 885, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060286

RESUMO

Formylpeptide receptors (FPRs) as G protein-coupled receptors (GPCRs) can recognize formylpeptides derived from pathogens or host cells to function in host defense and cell clearance. In addition, FPRs, especially FPR2, can also recognize other ligands with a large chemical diversity generated at different stages of inflammation to either promote or resolve inflammation in order to maintain a balanced inflammatory response. The mechanism underlying promiscuous ligand recognition and activation of FPRs is not clear. Here we report a cryo-EM structure of FPR2-Gi signaling complex with a peptide agonist. The structure reveals a widely open extracellular region with an amphiphilic environment for ligand binding. Together with computational docking and simulation, the structure suggests a molecular basis for the recognition of formylpeptides and a potential mechanism of receptor activation, and reveals conserved and divergent features in Gi coupling. Our results provide a basis for understanding the molecular mechanism of the functional promiscuity of FPRs.


Assuntos
Receptores de Formil Peptídeo/química , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/química , Receptores de Lipoxinas/metabolismo , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Ratos , Receptores de Formil Peptídeo/genética , Receptores de Lipoxinas/genética , Transdução de Sinais
4.
Mol Cell ; 77(3): 669-680.e4, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004470

RESUMO

Corticotropin-releasing factor (CRF) and the three related peptides urocortins 1-3 (UCN1-UCN3) are endocrine hormones that control the stress responses by activating CRF1R and CRF2R, two members of class B G-protein-coupled receptors (GPCRs). Here, we present two cryoelectron microscopy (cryo-EM) structures of UCN1-bound CRF1R and CRF2R with the stimulatory G protein. In both structures, UCN1 adopts a single straight helix with its N terminus dipped into the receptor transmembrane bundle. Although the peptide-binding residues in CRF1R and CRF2R are different from other members of class B GPCRs, the residues involved in receptor activation and G protein coupling are conserved. In addition, both structures reveal bound cholesterol molecules to the receptor transmembrane helices. Our structures define the basis of ligand-binding specificity in the CRF receptor-hormone system, establish a common mechanism of class B GPCR activation and G protein coupling, and provide a paradigm for studying membrane protein-lipid interactions for class B GPCRs.


Assuntos
Receptores de Hormônio Liberador da Corticotropina/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Hormônio Liberador da Corticotropina , Microscopia Crioeletrônica/métodos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Peptídeos/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/metabolismo
5.
Structure ; 27(12): 1862-1874.e7, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669042

RESUMO

"Universal" synthetic antibody (sAB)-based fiducial marks have been generated by customized phage display selections to facilitate the rapid structure determination of G protein-coupled receptor (GPCR) signaling complexes by single-particle cryo-electron microscopy (SP cryo-EM). sABs were generated to the two major G protein subclasses: trimeric Gi and Gs, as well as mini-Gs, and were tested to ensure binding in the context of their cognate GPCRs. Epitope binning revealed that multiple distinct epitopes exist for each G(αßγ) protein. Several Gßγ-specific sABs, cross-reactive between trimeric Gi and Gs, were identified suggesting they could be used across all subclasses in a "plug and play" fashion. sABs were also generated to a representative of another class of GPCR signaling partner, G protein receptor kinase 1 (GRK1) and evaluated further, supporting the generalizability of the approach. EM data suggested that the subclass-specific sABs provide effective single and dual fiducials for multiple GPCR signaling complexes.


Assuntos
Anticorpos/química , Receptor Quinase 1 Acoplada a Proteína G/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Biblioteca de Peptídeos , Sequência de Aminoácidos , Anticorpos/genética , Anticorpos/metabolismo , Especificidade de Anticorpos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
6.
Cell Res ; 29(12): 971-983, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31776446

RESUMO

Arrestins comprise a family of signal regulators of G-protein-coupled receptors (GPCRs), which include arrestins 1 to 4. While arrestins 1 and 4 are visual arrestins dedicated to rhodopsin, arrestins 2 and 3 (Arr2 and Arr3) are ß-arrestins known to regulate many nonvisual GPCRs. The dynamic and promiscuous coupling of Arr2 to nonvisual GPCRs has posed technical challenges to tackle the basis of arrestin binding to GPCRs. Here we report the structure of Arr2 in complex with neurotensin receptor 1 (NTSR1), which reveals an overall assembly that is strikingly different from the visual arrestin-rhodopsin complex by a 90° rotation of Arr2 relative to the receptor. In this new configuration, intracellular loop 3 (ICL3) and transmembrane helix 6 (TM6) of the receptor are oriented toward the N-terminal domain of the arrestin, making it possible for GPCRs that lack the C-terminal tail to couple Arr2 through their ICL3. Molecular dynamics simulation and crosslinking data further support the assembly of the Arr2‒NTSR1 complex. Sequence analysis and homology modeling suggest that the Arr2‒NTSR1 complex structure may provide an alternative template for modeling arrestin-GPCR interactions.


Assuntos
Receptores de Neurotensina , beta-Arrestina 2 , Humanos , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Conformação Proteica , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , beta-Arrestina 2/química , beta-Arrestina 2/metabolismo
7.
Science ; 364(6436): 148-153, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30975883

RESUMO

The parathyroid hormone receptor-1 (PTH1R) is a class B G protein-coupled receptor central to calcium homeostasis and a therapeutic target for osteoporosis and hypoparathyroidism. Here we report the cryo-electron microscopy structure of human PTH1R bound to a long-acting PTH analog and the stimulatory G protein. The bound peptide adopts an extended helix with its amino terminus inserted deeply into the receptor transmembrane domain (TMD), which leads to partial unwinding of the carboxyl terminus of transmembrane helix 6 and induces a sharp kink at the middle of this helix to allow the receptor to couple with G protein. In contrast to a single TMD structure state, the extracellular domain adopts multiple conformations. These results provide insights into the structural basis and dynamics of PTH binding and receptor activation.


Assuntos
Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptor Tipo 1 de Hormônio Paratireóideo/química , Motivos de Aminoácidos , Microscopia Crioeletrônica , Humanos , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/fisiologia , Ligação Proteica , Domínios Proteicos , Receptor Tipo 1 de Hormônio Paratireóideo/ultraestrutura
8.
J Biol Chem ; 293(44): 16994-17007, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30206123

RESUMO

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis and a promising drug target for managing metabolic diseases such as type 2 diabetes. Many pharmacological AMPK activators, and possibly unidentified physiological metabolites, bind to the allosteric drug and metabolite (ADaM) site at the interface between the kinase domain (KD) in the α-subunit and the carbohydrate-binding module (CBM) in the ß-subunit. Here, using double electron-electron resonance (DEER) spectroscopy, we demonstrate that the CBM-KD interaction is partially dissociated and the interface highly disordered in the absence of pharmacological ADaM site activators as inferred from a low depth of modulation and broad DEER distance distributions. ADaM site ligands such as 991, and to a lesser degree phosphorylation, stabilize the KD-CBM association and strikingly reduce conformational heterogeneity in the ADaM site. Our findings that the ADaM site, formed by the KD-CBM interaction, can be modulated by diverse ligands and by phosphorylation suggest that it may function as a hub for integrating regulatory signals.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzoatos/química , Benzoatos/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligantes , Conformação Proteica , Domínios Proteicos
9.
Nature ; 560(7720): 666-670, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135577

RESUMO

Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.


Assuntos
Receptores Frizzled/química , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/genética , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Via de Sinalização Wnt
10.
Nature ; 561(7724): E44, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29930353

RESUMO

In the PDF version of this Article, owing to a typesetting error, an incorrect figure was used for Extended Data Fig. 5; the correct figure was used in the HTML version. This has been corrected online.

11.
Nature ; 558(7711): 553-558, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899450

RESUMO

G-protein-coupled receptors comprise the largest family of mammalian transmembrane receptors. They mediate numerous cellular pathways by coupling with downstream signalling transducers, including the hetrotrimeric G proteins Gs (stimulatory) and Gi (inhibitory) and several arrestin proteins. The structural mechanisms that define how G-protein-coupled receptors selectively couple to a specific type of G protein or arrestin remain unknown. Here, using cryo-electron microscopy, we show that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi α-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopsin. Structural comparisons of inactive, Gi-bound and arrestin-bound forms of rhodopsin with inactive and Gs-bound forms of the ß2-adrenergic receptor provide a foundation to understand the unique structural signatures that are associated with the recognition of Gs, Gi and arrestin by activated G-protein-coupled receptors.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Rodopsina/metabolismo , Rodopsina/ultraestrutura , Arrestina/química , Arrestina/metabolismo , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Rodopsina/química , Transdução de Sinais , Especificidade por Substrato
12.
Cell Discov ; 4: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29560272

RESUMO

5-hydroxytryptamine (5-HT, also known as serotonin) regulates many physiological processes through the 5-HT receptor family. Here we report the crystal structure of 5-HT1B subtype receptor (5-HT1BR) bound to the psychotropic serotonin receptor inverse agonist methiothepin (MT). Crystallization was facilitated by replacing ICL3 with a novel optimized variant of BRIL (OB1) that enhances the formation of intermolecular polar interactions, making OB1 a potential useful tool for structural studies of membrane proteins. Unlike the agonist ergotamine (ERG), MT occupies only the conserved orthosteric binding pocket, explaining the wide spectrum effect of MT on serotonin receptors. Compared with ERG, MT shifts toward TM6 and sterically pushes residues W3276.48, F3306.50 and F3316.51 from inside the orthosteric binding pocket, leading to an outward movement of the extracellular end and a corresponding inward shift of the intracellular end of TM6, a feature shared by other reported inactive G protein-coupled receptor (GPCR) structures. Together with the previous agonist-bound serotonin receptor structures, the inverse agonist-bound 5-HT1BR structure identifies a basis for the ligand-mediated switch of 5-HT1BR activity and provides a structural understanding of the inactivation mechanism of 5-HT1BR and some other class A GPCRs, characterized by ligand-induced outward movement of the extracellular end of TM6 that is coupled with inward movement of the cytoplasmic end of this helix.

13.
Cell ; 170(3): 457-469.e13, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753425

RESUMO

G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular ß sheet with the N-terminal ß strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to ß-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.


Assuntos
Arrestinas/química , Rodopsina/química , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Cromatografia Líquida , Humanos , Camundongos , Modelos Moleculares , Fosforilação , Ratos , Rodopsina/metabolismo , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Raios X
14.
J Biol Chem ; 292(30): 12653-12666, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28615457

RESUMO

AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenina/metabolismo , Nucleotídeos/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Adenina/química , Sítios de Ligação , Humanos , Modelos Moleculares , Nucleotídeos/química
15.
J Biol Chem ; 292(24): 9865-9881, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28356352

RESUMO

The glucagon receptor (GCGR) belongs to the secretin-like (class B) family of G protein-coupled receptors (GPCRs) and is activated by the peptide hormone glucagon. The structures of an activated class B GPCR have remained unsolved, preventing a mechanistic understanding of how these receptors are activated. Using a combination of structural modeling and mutagenesis studies, we present here two modes of ligand-independent activation of GCGR. First, we identified a GCGR-specific hydrophobic lock comprising Met-338 and Phe-345 within the IC3 loop and transmembrane helix 6 (TM6) and found that this lock stabilizes the TM6 helix in the inactive conformation. Disruption of this hydrophobic lock led to constitutive G protein and arrestin signaling. Second, we discovered a polar core comprising conserved residues in TM2, TM3, TM6, and TM7, and mutations that disrupt this polar core led to constitutive GCGR activity. On the basis of these results, we propose a mechanistic model of GCGR activation in which TM6 is held in an inactive conformation by the conserved polar core and the hydrophobic lock. Mutations that disrupt these inhibitory elements allow TM6 to swing outward to adopt an active TM6 conformation similar to that of the canonical ß2-adrenergic receptor complexed with G protein and to that of rhodopsin complexed with arrestin. Importantly, mutations in the corresponding polar core of several other members of class B GPCRs, including PTH1R, PAC1R, VIP1R, and CRFR1, also induce constitutive G protein signaling, suggesting that the rearrangement of the polar core is a conserved mechanism for class B GPCR activation.


Assuntos
Modelos Moleculares , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptores de Hormônio Liberador da Corticotropina/agonistas , Receptores de Glucagon/agonistas , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/agonistas , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/agonistas , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Sequência Conservada , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucagon/química , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/química , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sistemas do Segundo Mensageiro , Homologia Estrutural de Proteína
16.
J Chem Phys ; 145(15): 154113, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27782467

RESUMO

In this communication we introduce an efficient implementation of adaptive biasing that greatly improves the speed of free energy computation in molecular dynamics simulations. We investigated the use of accelerated simulations to inform on compound design using a recently reported and clinically relevant inhibitor of the chromatin regulator BRD4 (bromodomain-containing protein 4). Benchmarking on our local compute cluster, our implementation achieves up to 2.5 times more force calls per day than plumed2. Results of five 1 µs-long simulations are presented, which reveal a conformational switch in the BRD4 inhibitor between a binding competent and incompetent state. Stabilization of the switch led to a -3 kcal/mol improvement of absolute binding free energy. These studies suggest an unexplored ligand design principle and offer new actionable hypotheses for medicinal chemistry efforts against this druggable epigenetic target class.


Assuntos
Sistemas de Liberação de Medicamentos , Simulação de Dinâmica Molecular , Proteínas Nucleares/química , Fatores de Transcrição/química , Proteínas de Ciclo Celular , Humanos , Ligantes , Proteínas Nucleares/antagonistas & inibidores , Ligação Proteica , Conformação Proteica , Termodinâmica , Fatores de Transcrição/antagonistas & inibidores
17.
Acta Pharmacol Sin ; 37(9): 1259-72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27498775

RESUMO

AIM: Dominant negative mutant G proteins have provided critical insight into the mechanisms of G protein-coupled receptor (GPCR) signaling, but the mechanisms underlying the dominant negative characteristics are not completely understood. The aim of this study was to determine the structure of the dominant negative Gαi1ß1γ2 G203A/A326S complex (Gi-DN) and to reveal the structural basis of the mutation-induced phenotype of Gαi1ß1γ2. METHODS: The three subunits of the Gi-DN complex were co-expressed with a baculovirus expression system. The Gi-DN heterotrimer was purified, and the structure of its complex with GDP was determined through X-ray crystallography. RESULTS: The Gi-DN heterotrimer structure revealed a dual mechanism underlying the dominant negative characteristics. The mutations weakened the hydrogen bonding network between GDP/GTP and the binding pocket residues, and increased the interactions in the Gα-Gßγ interface. Concomitantly, the Gi-DN heterotrimer adopted a conformation, in which the C-terminus of Gαi and the N-termini of both the Gß and Gγ subunits were more similar to the GPCR-bound state compared with the wild type complex. From these structural observations, two additional mutations (T48F and D272F) were designed that completely abolish the GDP binding of the Gi-DN heterotrimer. CONCLUSION: Overall, the results suggest that the mutations impede guanine nucleotide binding and Gα-Gßγ protein dissociation and favor the formation of the G protein/GPCR complex, thus blocking signal propagation. In addition, the structure provides a rationale for the design of other mutations that cause dominant negative effects in the G protein, as exemplified by the T48F and D272F mutations.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Alinhamento de Sequência , Células Sf9 , Spodoptera
18.
J Med Chem ; 59(17): 7856-76, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27458733

RESUMO

Targeted antifolates with heteroatom replacements of the carbon vicinal to the phenyl ring in 1 by N (4), O (8), or S (9), or with N-substituted formyl (5), acetyl (6), or trifluoroacetyl (7) moieties, were synthesized and tested for selective cellular uptake by folate receptor (FR) α and ß or the proton-coupled folate transporter. Results show increased in vitro antiproliferative activity toward engineered Chinese hamster ovary cells expressing FRs by 4-9 over the CH2 analogue 1. Compounds 4-9 inhibited de novo purine biosynthesis and glycinamide ribonucleotide formyltransferase (GARFTase). X-ray crystal structures for 4 with FRα and GARFTase showed that the bound conformations of 4 required flexibility for attachment to both FRα and GARFTase. In mice bearing IGROV1 ovarian tumor xenografts, 4 was highly efficacious. Our results establish that heteroatom substitutions in the 3-atom bridge region of 6-substituted pyrrolo[2,3-d]pyrimidines related to 1 provide targeted antifolates that warrant further evaluation as anticancer agents.


Assuntos
Antineoplásicos/química , Receptor 1 de Folato/metabolismo , Antagonistas do Ácido Fólico/química , Transportador de Folato Acoplado a Próton/metabolismo , Nucleotídeos de Purina/antagonistas & inibidores , Pirimidinas/química , Pirróis/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/farmacologia , Xenoenxertos , Humanos , Camundongos SCID , Simulação de Acoplamento Molecular , Transplante de Neoplasias , Fosforribosilglicinamido Formiltransferase/antagonistas & inibidores , Nucleotídeos de Purina/biossíntese , Pirimidinas/síntese química , Pirimidinas/farmacologia , Pirróis/síntese química , Pirróis/farmacologia , Relação Estrutura-Atividade
19.
Sci Data ; 3: 160021, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27070998

RESUMO

Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.


Assuntos
Arrestina/química , Rodopsina/química , Animais , Cristalização , Cristalografia por Raios X , Humanos , Camundongos , Modelos Químicos , Relação Estrutura-Atividade
20.
Cell Res ; 25(11): 1219-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26470846

RESUMO

Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/ß-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCF(D3) that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process.


Assuntos
Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/química , Proteínas Ligases SKP Culina F-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...