Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 87(6): 2465-2474, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32790909

RESUMO

AIMS: The field of cell-based therapies for human diseases is currently evolving from promising treatment options to established therapeutic concepts. The design of the nonclinical development program for cell-based products, intended to provide a rationale for treatment and to gain insight into the safety profile, is challenging because of limitations caused by species-specificity. The elements of the nonclinical package for cell-based products were evaluated using advice reports from the European Medicines Agency database from 2013 to 2018 to identify the approach followed for nonclinical development of these products. METHODS: The number and purpose of proposed and performed in vivo studies was recorded, as well as the type and design of in vitro and in vivo studies addressing biodistribution and tumorigenicity. Subsequently, the nonclinical development program was analysed for consistency across products. RESULTS: In vivo studies for cell-based therapies were primarily aimed at proof-of-concept (75/86), followed by addressing safety (64/86), biodistribution (49/86) and tumourigenicity (46/86). No animal studies were performed or proposed by sponsors or regulators for 6/86 products which contained cell types that have been studied in humans for a relatively long time. For one-third of the products in vivo biodistribution and/or tumourigenicity studies were not considered necessary. in vivo tumourigenicity studies were regarded as having limited value. CONCLUSIONS: Compared to more conventional medicinal products, the nonclinical development program for cell-based products was more tailored and focused on proof-of-concept. For tumourigenicity an in vitro approach may suffice. Total omission of in vivo studies appears to be possible for products with sufficient clinical experience.


Assuntos
Projetos de Pesquisa , Humanos , Distribuição Tecidual
2.
Front Med (Lausanne) ; 7: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300597

RESUMO

Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.

3.
PLoS One ; 12(6): e0179942, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28658271

RESUMO

Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg) and activated (aTreg) subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation of Treg frequencies and phenotypes following vaccination.


Assuntos
Linfócitos T Reguladores/efeitos dos fármacos , Vacinas Virais/farmacologia , Adulto , Animais , Feminino , Vacinas contra Hepatite B/imunologia , Vacinas contra Hepatite B/farmacologia , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Contagem de Linfócitos , Masculino , Camundongos , Fragmentos de Peptídeos , Protrombina , Linfócitos T Reguladores/imunologia , Vacinas/imunologia , Vacinas/farmacologia , Vacinas Virais/imunologia , Vacina contra Febre Amarela/imunologia , Vacina contra Febre Amarela/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...