Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 38(3): 585-93, 1999 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-18305651

RESUMO

Lidar backscatter from clouds in the Delft University of Technology experiment is complicated by the fact that the transmitter has a narrow beam width, whereas the receiver has a much wider one. The issue here is whether reception of light scattered incoherently by cloud particles can contribute appreciably to the received power. The incoherent contribution can come from within as well as from outside the transmitter beam but in any case is due to at least two scattering processes in the cloud that are not included in the coherent forward scatter that leads to the usual exponentially attenuated contribution from single-particle backscatter. It is conceivable that a sizable fraction of the total received power within the receiver beam width is due to such incoherent-scattering processes. The ratio of this contribution to the direct (but attenuated) reflection from a single particle is estimated here by means of a distorted-Born approximation to the wave equation (with an incident cw monochromatic wave) and by comparison of the magnitude of the doubly scattered to that of the singly scattered flux. The same expressions are also obtained from a radiative-transfer formalism. The ratio underestimates incoherent multiple scattering when it is not small. Corrections that are due to changes in polarization are noted.

2.
Appl Opt ; 17(8): 1280-5, 1978 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20197972

RESUMO

A light beam propagating through a turbid medium (e.g., aerosol) can be severely attenuated by scattering losses and still retain coherence over distances comparable to particle diameters. An expression for the two-detector mutual-coherence function is rederived by means of approximations clarified by a physical model. Its spatial and temporal properties are further examined by means of a simplified physical aerosol model leading to tractable mathematical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA