Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31712185

RESUMO

Toxaphene is a restricted-use pesticide produced by reacting chlorine gas with camphene. It was heavily used as a pesticide for agricultural purposes in the 1960-1970s, but despite being banned >30 years ago, it can remain elevated in the soil due to its resistance to metabolic degradation; this has led to longstanding concerns about elevated levels of toxaphene and other organochlorine pesticides (OCPs) in the environment. The objective of this study were to determine the effects of waterborne exposure to toxaphene on early life stages of zebrafish. Based on the LC50, zebrafish embryos were exposed to control (embryo rearing media or DMSO) or to one dose of toxaphene ranging between 0.011 and 111.1 µg/mL from 6 h post fertilization (hpf) up to 120 hpf. Significant mortality and hatch time delays were observed in embryos exposed to toxaphene (at or above 0.11 and 1.11 µg/mL, depending on the assay). Higher prevalence of deformities was noted at higher doses (≥0.011 µg/mL), and these included pericardial edema and skeletal deformities. As energy production is important for normal development, mitochondrial bioenergetics were assessed in embryos following toxaphene exposure. Embryos exposed to 11.1 or 111 µg/mL toxaphene for 24 h showed lower non-mitochondrial respiration (~30%) compared to both solvent and no treatment controls. Expression of transcripts related to oxidative damage responses and apoptosis were measured and heat shock protein 70 was significantly increased with 111 µg/mL toxaphene (14.5 fold), while the expression levels of caspase 3, caspase 9, and superoxide dismutase 1 were not changed. These data demonstrate that developmental deformities induced by toxaphene include pericardial edema and skeletal deformity, and that toxaphene can affect oxidative phosphorylation in early staged zebrafish.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Praguicidas/toxicidade , Toxafeno/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Larva/metabolismo , Estresse Oxidativo
2.
PLoS One ; 14(1): e0210547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633761

RESUMO

New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.


Assuntos
Antibacterianos/farmacologia , Ciclopirox/farmacologia , Escherichia coli/efeitos dos fármacos , Ferro/metabolismo , Açúcares/análise , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antifúngicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobactina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Genes Bacterianos/genética , Klebsiella/efeitos dos fármacos , Klebsiella/genética , Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Sideróforos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...