Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genet ; 64(2): 393-404, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29022131

RESUMO

Ribosome biogenesis is a crucial process for growth and constitutes the major consumer of cellular resources. This pathway is subjected to very stringent regulation to ensure correct ribosome manufacture with a wide variety of environmental and metabolic changes, and intracellular insults. Here we summarise our current knowledge on the regulation of ribosome biogenesis in Saccharomyces cerevisiae by particularly focusing on the feedback mechanisms that maintain ribosome homeostasis. Ribosome biogenesis in yeast is controlled mainly at the level of the production of both pre-rRNAs and ribosomal proteins through the transcriptional and post-transcriptional control of the TORC1 and protein kinase A signalling pathways. Pre-rRNA processing can occur before or after the 35S pre-rRNA transcript is completed; the switch between these two alternatives is regulated by growth conditions. The expression of both ribosomal proteins and the large family of transacting factors involved in ribosome biogenesis is co-regulated. Recently, it has been shown that the synthesis of rRNA and ribosomal proteins, but not of trans-factors, is coupled. Thus the so-called CURI complex sequesters specific transcription factor Ifh1 to repress ribosomal protein genes when rRNA transcription is impaired. We recently found that an analogue system should operate to control the expression of transacting factor genes in response to actual ribosome assembly performance. Regulation of ribosome biogenesis manages situations of imbalanced ribosome production or misassembled ribosomal precursors and subunits, which have been closely linked to distinct human diseases.


Assuntos
RNA Ribossômico/genética , Ribossomos/genética , Transcrição Gênica , Núcleo Celular/genética , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/biossíntese , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética
2.
Methods Mol Biol ; 824: 51-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22160893

RESUMO

The organization of DNA into the various levels of chromatin compaction is the main obstacle that restricts the access of transcriptional machinery to genes. Genome-wide chromatin analyses have shown that there are common chromatin organization patterns for most genes but have also revealed important differences in nucleosome positioning throughout the genome. Such chromatin heterogeneity is one of the reasons why recombinant gene expression is highly dependent on integration sites. Different solutions have been tested for this problem, including artificial targeting of chromatin-modifying factors or the addition of DNA elements, which efficiently counteract the influence of the chromatin environment.An influence of the chromatin configuration of the recombinant gene itself on its transcriptional behavior has also been established. This view is especially important for heterologous genes since the general parameters of chromatin organization change from one species to another. The chromatin organization of bacterial DNA proves particularly dramatic when introduced into eukaryotes. The nucleosome positioning of recombinant genes is the result of the interaction between the machinery of the hosting cell and the sequences of both the recombinant genes and the promoter regions. We discuss the key aspects of this phenomenon from the heterologous gene expression perspective.


Assuntos
Cromatina/fisiologia , Regulação da Expressão Gênica/fisiologia , Nucleossomos/genética , Nucleossomos/fisiologia , Proteínas Recombinantes/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
3.
Biotechnol Lett ; 30(6): 979-87, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18239858

RESUMO

Saccharomyces cerevisiae is frequently used in biotechnology, including fermentative processes in food production, heterologous protein production and high throughput developments for biomedicine. Accurate expression of selected genes is essential for all these areas. Systems that can be regulated are particularly useful because they allow controlling the timing and levels of gene expression. We examine here new expression systems that have been described, including improvements of classical ones and new strategies of artificial gene control that have been applied in functional genomics.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Engenharia Genética , Saccharomyces cerevisiae/genética , Anaerobiose , Proteínas de Transporte/genética , Galactoquinase/genética , Genômica , Metalotioneína , Regiões Operadoras Genéticas , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...