Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(3): 99, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38538285

RESUMO

Altered metabolism represents a fundamental difference between cancer cells and normal cells. Cancer cells have a unique ability to reprogram their metabolism by deviating their reliance from primarily oxidative phosphorylation (OXPHOS) to glycolysis, in order to support their survival. This metabolic phenotype is referred to as the "Warburg effect" and is associated with an increase in glucose uptake, and a diversion of glycolytic intermediates to alternative pathways that support anabolic processes. These processes include synthesis of nucleic acids, lipids, and proteins, necessary for the rapidly dividing cancer cells, sustaining their growth, proliferation, and capacity for successful metastasis. Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with the poorest patient outcome due to its high rate of metastasis. TNBC is characterized by elevated glycolysis and in certain instances, low OXPHOS. This metabolic dysregulation is linked to chemotherapeutic resistance in TNBC research models and patient samples. There is more than a single mechanism by which this metabolic switch occurs and here, we review the current knowledge of relevant molecular mechanisms involved in advanced breast cancer metabolism, focusing on TNBC. These mechanisms include the Warburg effect, glycolytic adaptations, microRNA regulation, mitochondrial involvement, mitochondrial calcium signaling, and a more recent player in metabolic regulation, JAK/STAT signaling. In addition, we explore some of the drugs and compounds targeting cancer metabolic reprogramming. Research on these mechanisms is highly promising and could ultimately offer new opportunities for the development of innovative therapies to treat advanced breast cancer characterized by dysregulated metabolism.


Assuntos
Fosforilação Oxidativa , Neoplasias de Mama Triplo Negativas , Humanos , Cálcio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Glicólise/fisiologia , Transdução de Sinais , Linhagem Celular Tumoral
2.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444474

RESUMO

Interleukin 24 is a member of the IL-10 family with crucial roles in antitumor, wound healing responses, host defense, immune regulation, and inflammation. Interleukin 24 is produced by both immune and nonimmune cells. Its canonical pathway relies on recognition and interaction with specific Interleukin 20 receptors in the plasma membrane and subsequent cytoplasmic Janus protein tyrosine kinases (JAK)/signal transducer and activator of the transcription (STAT) activation. The identification of noncanonical JAK/STAT-independent signaling pathways downstream of IL-24 relies on the interaction of IL-24 with protein kinase R in the cytosol, respiratory chain proteins in the inner mitochondrial membrane, and chaperones such as Sigma 1 Receptor in the endoplasmic reticulum. Numerous studies have shown that enhancing or inhibiting the expression of Interleukin 24 has a therapeutic effect in animal models and clinical trials in different pathologies. Successful drug targeting will require a deeper understanding of the downstream signaling pathways. In this review, we discuss the signaling pathway triggered by IL-24.

3.
Nat Commun ; 12(1): 6979, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848685

RESUMO

Regulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4+ T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5' noncoding regions. Silencing DAP5 in isolated human naive CD4+ T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.


Assuntos
Diferenciação Celular , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Terapia de Imunossupressão , Biossíntese de Proteínas , Linfócitos T Reguladores/metabolismo , Regulação para Baixo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Regulação da Expressão Gênica , Células HEK293 , Homeostase , Humanos , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA Mensageiro , Fator de Crescimento Transformador beta1/metabolismo
4.
Nat Commun ; 9(1): 3068, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076308

RESUMO

Translation initiation of most mammalian mRNAs is mediated by a 5' cap structure that binds eukaryotic initiation factor 4E (eIF4E). However, inactivation of eIF4E does not impair translation of many capped mRNAs, suggesting an unknown alternate mechanism may exist for cap-dependent but eIF4E-independent translation. We show that DAP5, an eIF4GI homolog that lacks eIF4E binding, utilizes eIF3d to facilitate cap-dependent translation of approximately 20% of mRNAs. Genome-wide transcriptomic and translatomic analyses indicate that DAP5 is required for translation of many transcription factors and receptor capped mRNAs and their mRNA targets involved in cell survival, motility, DNA repair and translation initiation, among other mRNAs. Mass spectrometry and crosslinking studies demonstrate that eIF3d is a direct binding partner of DAP5. In vitro translation and ribosome complex studies demonstrate that DAP5 and eIF3d are both essential for eIF4E-independent capped-mRNA translation. These studies disclose a widespread and previously unknown mechanism for cap-dependent mRNA translation by DAP5-eIF3d complexes.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Ligação Proteica , Processamento de Proteína Pós-Traducional/fisiologia , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Inativação Gênica , Células HEK293 , Humanos , Ribossomos/metabolismo , Transcriptoma
5.
Curr Opin Genet Dev ; 48: 82-88, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29153484

RESUMO

Deregulation of several translation initiation factors occurs in numerous types of cancers. Translation initiation factors are not merely ancillary players in cancer development and progression, but rather, they are key participants in cellular transformation and tumor development. In fact, the altered expression of translation initiation factors is involved in cancer cell survival, metastasis and tumor angiogenesis. Although the exact mechanisms remain to be fully characterized, translation initiation factors comprise novel targets for pharmacologic intervention. Here we review the most recently established roles of initiation factors in cancer development and progression, as well as unique methods used to study translational regulation.


Assuntos
Neoplasias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Carcinogênese , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Iniciação de Peptídeos/genética
6.
Nutr Cancer ; 68(1): 154-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771440

RESUMO

We previously reported that dietary genistein inhibits mammary tumor growth and metastasis of the highly metastatic MDA-MB-435 cancer cells in immunocompromised mice. The purpose herein was to characterize the role of the novel oncogenic microRNA (miRNA) miR-155 in the anticancer effects of genistein in metastatic breast cancer. The effect of genistein was determined on breast cancer cell viability, apoptosis, and expression of miR-155 and its targets. At low physiologically relevant concentrations, genistein inhibits cell viability and induces apoptosis in metastatic MDA-MB-435 and Hs578t breast cancer cells, without affecting the viability of nonmetastatic MCF-7 breast cancer cells. In parallel with reduced cell viability, miR-155 is downregulated, whereas proapoptotic and anticell proliferative miR-155 targets FOXO3, PTEN, casein kinase, and p27 are upregulated in MDA-MB-435 and Hs578t cells in response to genistein treatment. However, miR-155 levels remain unchanged in response to genistein in the MCF-7 cells. Ectopic expression of miR-155 in MDA-MB-435 and Hs578t cells decreases the effects of genistein on cell viability and abrogates the effects of genistein on apoptosis and expression of proapoptotic genes. Therefore, genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein in metastatic breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Genisteína/farmacologia , MicroRNAs/análise , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Feminino , Humanos , Células MCF-7 , PTEN Fosfo-Hidrolase/análise
7.
J Biol Chem ; 290(10): 6047-57, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25593313

RESUMO

Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER-) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Equol/administração & dosagem , Fator de Iniciação Eucariótico 4G/metabolismo , Isoflavonas/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de Estrogênio/genética , Glycine max/química
8.
Transl Oncol ; 7(5): 546-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25389450

RESUMO

Metastatic disease still lacks effective treatments, and remains the primary cause of cancer mortality. Therefore, there is a critical need to develop better strategies to inhibit metastatic cancer. The Rho family GTPase Rac is an ideal target for anti-metastatic cancer therapy, because Rac is a key molecular switch that is activated by a myriad of cell surface receptors to promote cancer cell migration/invasion and survival. Previously, we reported the design and development of EHop-016, a small molecule compound, which inhibits Rac activity of metastatic cancer cells with an IC50 of 1 µM. EHop-016 also inhibits the activity of the Rac downstream effector p21-activated kinase (PAK), lamellipodia extension, and cell migration in metastatic cancer cells. Herein, we tested the efficacy of EHop-016 in a nude mouse model of experimental metastasis, where EHop-016 administration at 25 mg/kg body weight (BW) significantly reduced mammary fat pad tumor growth, metastasis, and angiogenesis. As quantified by UPLC MS/MS, EHop-016 was detectable in the plasma of nude mice at 17 to 23 ng/ml levels at 12 h following intraperitoneal (i.p.) administration of 10 to 25 mg/kg BW EHop-016. The EHop-016 mediated inhibition of angiogenesis In Vivo was confirmed by immunohistochemistry of excised tumors and by In Vitro tube formation assays of endothelial cells. Moreover, EHop-016 affected cell viability by down-regulating Akt and Jun kinase activities and c-Myc and Cyclin D expression, as well as increasing caspase 3/7 activities in metastatic cancer cells. In conclusion, EHop-016 has potential as an anticancer compound to block cancer progression via multiple Rac-directed mechanisms.

9.
J Biol Chem ; 287(50): 41640-50, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23095751

RESUMO

Dietary soy is thought to be cancer-preventive; however, the beneficial effects of soy on established breast cancer is controversial. We recently demonstrated that dietary daidzein or combined soy isoflavones (genistein, daidzein, and glycitein) increased primary mammary tumor growth and metastasis. Cancer-promoting molecules, including eukaryotic protein synthesis initiation factors (eIF) eIF4G and eIF4E, were up-regulated in mammary tumors from mice that received dietary daidzein. Herein, we show that increased eIF expression in tumor extracts of mice after daidzein diets is associated with protein expression of mRNAs with internal ribosome entry sites (IRES) that are sensitive to eIF4E and eIF4G levels. Results with metastatic cancer cell lines show that some of the effects of daidzein in vivo can be recapitulated by the daidzein metabolite equol. In vitro, equol, but not daidzein, up-regulated eIF4G without affecting eIF4E or its regulator, 4E-binding protein (4E-BP), levels. Equol also increased metastatic cancer cell viability. Equol specifically increased the protein expression of IRES containing cell survival and proliferation-promoting molecules and up-regulated gene and protein expression of the transcription factor c-Myc. Moreover, equol increased the polysomal association of mRNAs for p 120 catenin and eIF4G. The elevated eIF4G in response to equol was not associated with eIF4E or 4E-binding protein in 5' cap co-capture assays or co-immunoprecipitations. In dual luciferase assays, IRES-dependent protein synthesis was increased by equol. Therefore, up-regulation of eIF4G by equol may result in increased translation of pro-cancer mRNAs with IRESs and, thus, promote cancer malignancy.


Assuntos
Neoplasias da Mama/metabolismo , Equol/efeitos adversos , Fator de Iniciação Eucariótico 4G/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glycine max/química , Fitoestrógenos/efeitos adversos , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Suplementos Nutricionais/efeitos adversos , Equol/química , Equol/farmacologia , Fator de Iniciação 4E em Eucariotos/biossíntese , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Isoflavonas/efeitos adversos , Isoflavonas/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fitoestrógenos/química , Fitoestrógenos/farmacologia , Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transplante Heterólogo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
10.
J Agric Food Chem ; 55(10): 4177-83, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17455952

RESUMO

The phytochemical profiles (total phenolics, anthocyanins, ferulic acid, carotenoids) and antioxidant activities of five types of corn (white, yellow, high carotenoid, blue, and red) processed into masa, tortillas, and tortilla chips were studied. The nixtamalization process significantly (p < 0.05) reduced total phenolics and antioxidant activities when compared to raw grains. Nixtamalized grains exhibited higher concentration of free phenolics and soluble conjugated ferulic acid and had lower concentrations of bound phenolics and ferulic acid than unprocessed grains. Among processed products, there was little difference in the phytochemical contents and antioxidant activities. Among types of corn, the highest concentrations of total phenolics, ferulic acid, and antioxidant activity were observed in the high-carotenoid genotype followed by the regular yellow counterpart. The white corn contained the lowest amount of total phenolics and antioxidant activity. The pigmented blue corn had the highest anthocyanin concentration followed by the red counterpart. These findings suggest that lime-cooking significantly reduced the phytochemical content of nixtamalized products but released phenolics and ferulic acid.


Assuntos
Antioxidantes/análise , Manipulação de Alimentos/métodos , Zea mays/química , Antocianinas/análise , Carotenoides/análise , Ácidos Cumáricos/análise , Genótipo , México , Fenóis/análise , Sementes/química , Zea mays/genética
11.
Plant Foods Hum Nutr ; 61(3): 121-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17031604

RESUMO

Different sources of DHA and/or n-3 (omega-3) rich oils, oil emulsions and microencapsulated (ME) powders were tested at two different concentrations with the aim of producing fortified pan bread. Three oils (S-algae, fish and flax), two emulsified algae oils (Emulsion-P and Emulsion-L) and two ME oils (ME-S algae and ME-C algae) were compared. The DHA and n-3 oils replaced part of the shortening in order to obtain 32 g slices enriched with 25 or 50 mg DHA, 35 or 70 mg total n-3 from fish oil and 90 or 180 mg linolenic from flax oil. Addition of oils did not significantly affect water absorption but reduced mix time whereas addition of the ME oils decreased both water absorption and mix time. Breads enriched with flax or ME-C oils had lower volume and higher density than the control, ME-S algae, Emulsion-P and Emulsion-L breads. All breads lost texture throughout 14 d storage, the major changes occurred after 3 d. The ME-S algae oil bread had the best softness after 14 d storage whereas breads produced from ME-S algae or ME-C algae oils had the poorest texture. Sensory evaluations indicated that the color of the ME-S algae oil fortified bread was significantly less preferred than the other loaves. After 6 d the control bread had higher acceptability compared with the rest of the breads enriched with high levels of DHA or omega-3 oils. The high-enriched fish oil bread was well accepted during the first days of storage but had the least preferred acceptability after 13 d. The best fortified breads were those supplemented with S-algae oil, Emulsion-P and Emulsion-L oils.


Assuntos
Pão/normas , Ácidos Docosa-Hexaenoicos/farmacologia , Manipulação de Alimentos/normas , Conservação de Alimentos/normas , Alimentos Fortificados , Pão/análise , Cor , Relação Dose-Resposta a Droga , Composição de Medicamentos , Emulsões , Eucariotos/química , Óleos de Peixe/farmacologia , Manipulação de Alimentos/métodos , Humanos , Óleo de Semente do Linho/farmacologia , Valor Nutritivo , Controle de Qualidade , Paladar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...