Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2309672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206096

RESUMO

Development of both organic photovoltaics (OPVs) and organic photocatalysts has focused on utilizing the bulk heterojunction (BHJ). The BHJ promotes charge separation and enhances the carrier lifetime, but may give rise to increased charge traps, hindering performance. Here, high photocatalytic and photovoltaic performance is displayed by electron donor-acceptor (D-A) nanoparticles (NPs) and films, using the nonfullerene acceptor Y6 and polymer donor PIDT-T8BT. In contrast to conventional D-A systems, the charge generation in PIDT-T8BT:Y6 NPs is mainly driven by Y6, allowing a high performance even at a low D:A mass ratio of 1:50. The high performance at the low mass ratio is attributed to the amorphous behavior of PIDT-T8BT. Low ratios are generally thought to yield lower efficiency than the more conventional ≈1:1 ratio. However, the OPVs exhibit peak performance at a D:A ratio of 1:5. Similarly the NPs used for photocatalytic hydrogen evolution show peak performance at the 1:6.7 D:A ratio. Interestingly, for the PIDT-T8BT:Y6 system, as the polymer proportion increases, a reduced photocatalytic and photovoltaic performance is observed. The unconventional D:A ratios provide lower recombination losses and increased charge-carrier lifetime with undisrupted ambipolar charge transport in bulk Y6, enabling better performance than conventional ratios. This work reports novel light-harvesting materials in which performance is reduced due to unfavorable morphology as D:A ratios move toward conventional ratios of 1:1.2-1:1.

2.
Phys Chem Chem Phys ; 25(9): 6817-6829, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790866

RESUMO

Singlet fission (SF) holds the promise to circumvent the photovoltaic efficiency limit to reach a power-conversion efficiency above 34%. SF of TIPS-pentacene (TIPS-Pn) has been investigated but its mechanism is yet to be well elucidated. Recently, we developed a nanoparticle (NP) system, in which doping of TIPS-Pn in a host matrix yields a range of average intermolecular distances, d, to study the dependence of SF in TIPS-Pn on d. At large d values, where the bimolecular SF process should be unfavourable, a relatively high SF quantum yield (ΦSF) is still observed, which implies a deviation from a random distribution of TIPS-Pn throughout the NP. Here, using polarisation-sensitive femtosecond time-resolved spectroscopy and Monte Carlo simulations of exciton migration and SF, we quantify the level of clustering of TIPS-Pn in the host matrix, which is responsible for the higher than expected ΦSF. The experimental data indicate a preservation of polarisation correlation by SF, which is uncommon because energy transfer in amorphous materials tends to result in depolarisation. We show that the preservation of polarisation correlation is due to SF upon exciton migration. Although exciton migration decorrelates polarisation, SF acts to remove decorrelated excitons to give an overall preservation of polarisation correlation.

3.
J Chem Phys ; 155(1): 014302, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241376

RESUMO

TIPS-pentacene is a small-molecule organic semiconductor that is widely used in optoelectronic devices. It has been studied intensely owing to its ability to undergo singlet fission. In this study, we aim to develop further understanding of the coupling between the electronic and nuclear degrees of freedom of TIPS-pentacene (TIPS-Pn). We measured and analyzed the 2D electronic spectra of TIPS-Pn in solutions. Using center line slope (CLS) analysis, we characterized the frequency-fluctuation correlation function of the 0-0 vibronic transition. Strong oscillations in the CLS values were observed for up to 5 ps with a frequency of 264 cm-1, which are attributable to a large vibronic coupling with the TIPS-Pn ring-breathing vibrational mode. In addition, detailed analysis of the CLS values allowed us to retrieve two spectral diffusion lifetimes, which are attributed to the inertial and diffusive dynamics of solvent molecules. Amplitude beating analysis also uncovered couplings with another vibrational mode at 1173 cm-1. The experimental results can be described using the displaced harmonic oscillator model. By comparing the CLS values of the simulated data with the experimental CLS values, we estimated a Huang-Rhys factor of 0.1 for the ring-breathing vibrational mode. The results demonstrated how CLS analysis can be a useful method for characterizing the strength of vibronic coupling.

4.
J Phys Chem Lett ; 11(2): 516-523, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31884794

RESUMO

Nanoparticles of acenes exhibit highly efficient intermolecular singlet fission (SF). Recent reports indicate that altering the morphology of 6,13-bis-(triisopropylsilylethynyl)pentacene (TIPS-Pn) nanoparticles has a profound influence on their SF dynamics. Here, we show that poly(vinyl alcohol) (PVA) induces a phase transition in preformed TIPS-Pn nanoparticles. These nanoparticles are amorphous when initially formed but crystalline after addition of PVA. Surface characterization indicates that a diffuse PVA layer surrounds the nanoparticles. We propose that a periodic interaction between the hydroxyl groups of PVA and TIPS groups of TIPS-Pn on the nanoparticle surface induces a large-scale structural rearrangement to yield crystalline TIPS-Pn. Such reorganization in preformed organic nanoparticles is unprecedented, and we believe that this is the first report of such an effect induced by polymer adsorption. Transient absorption spectroscopic results reveal that SF within these nanoparticles is accelerated by an order of magnitude upon structural rearrangement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...