Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 80(5): 2422-30, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11325741

RESUMO

There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosin-bovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time phi(BSA, 1 cP, 20 degrees C) = 40 +/- 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 x 84 x 84 x 31.5 A, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.


Assuntos
Albumina Sérica/química , Animais , Fenômenos Biofísicos , Biofísica , Bovinos , Cristalografia , Eritrosina/química , Glicerol/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Modelos Teóricos , Ligação Proteica , Conformação Proteica , Soroalbumina Bovina/química , Espectrofotometria , Termodinâmica , Fatores de Tempo , Água/química
2.
Biophys J ; 77(6): 2902-10, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10585914

RESUMO

The proliferation of hydrodynamic modeling strategies to represent the shape of quasirigid macromolecules in solution has been hampered by ambiguities caused by size. Universal shape parameters, independent of size, developed originally for ellipsoid modeling, are now available for modeling using the bead-shell approximation via the algorithm SOLPRO. This paper validates such a "size-independent" bead-shell approach by comparison with the exact hydrodynamics of 1) an ellipsoid of revolution and 2) a general triaxial ellipsoid (semiaxial ratios a/b, b/c) based on a fit using the routine ELLIPSE (. J. Mol. Graph. 1:30-38) to the chimeric (human/mouse) IgG Fab' B72.3; a similar fit is obtained for other Fabs. Size-independent application of the bead-shell approximation yields errors of only approximately 1% in frictional ratio based shape functions and approximately 3% in the radius of gyration. With the viscosity increment, errors have been reduced to approximately 3%, representing a significant improvement on earlier procedures. Combination of the Perrin frictional ratio function with the experimentally measured sedimentation coefficient for the same Fab' from B72.3 yields an estimate for the molecular hydration of the Fab' fragment of approximately (0.43 +/- 0.07) g/g. This value is compared to values obtained in a similar way for deoxyhemoglobin (0.44) and ribonuclease (0.27). The application of SOLPRO to the shape analysis of more complex macromolecules is indicated, and we encourage such size-independent strategies. The utility of modern sedimentation data analysis software such as SVEDBERG, DCDT, LAMM, and MSTAR is also clearly demonstrated.


Assuntos
Algoritmos , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Conformação Proteica , Animais , Fenômenos Biofísicos , Biofísica , Hemoglobinas/química , Humanos , Substâncias Macromoleculares , Camundongos , Peso Molecular , Tamanho da Partícula , Ribonucleases/química
3.
Biophys Chem ; 74(2): 127-33, 1998 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17029739

RESUMO

Oil seed globulins from sunflower and rape seed are multi-subunit, oligomeric proteins whose native 11S form is a hexamer. In this work we try to determine the spatial structure in which the six subunits of 11S globulin are arranged. Experimental values of solution properties, including radius of gyration, sedimentation and diffusion coefficients and intrinsic viscosity, are compared with theoretical predictions for hexamers of various geometries. Bead model calculations of solution properties are carried out using the HYDRO and SOLPRO computer programs. A most compact shape, the regular octahedron, is the hexameric structure that fits best the experimental values.

4.
Appl Environ Microbiol ; 62(8): 3073, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16535391

RESUMO

Volume 62, no. 5, p. 1702, column 2, equation 3: the equation should read as follows. g(sup1)((tau)) = [g(sup2)((tau)) - 1](sup1/2) = exp[-K(sup2)(D(inf1) cos(sup2)(alpha) + D(inf2) sin(sup2)(alpha))(tau)] (3) [This corrects the article on p. 1699 in vol. 62.].

5.
Appl Environ Microbiol ; 62(5): 1699-704, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-16535316

RESUMO

Quasielastic light scattering (QLS) and laser diffractometry (LD) are relatively novel nondestructive procedures for estimating the sizes of bacterial spores in suspension. This study for the first time directly compared the two with a destructive procedure, namely, scanning electron microscopy (SEM), for quasispherical spores of Bacillus sphaericus. Because of the different physical aspect measured, the sizes derived by QLS and LD are, as could be expected for spores with an exosporium, significantly different. The larger estimates obtained by QLS (1.70, 1.58, and 1.14 (mu)m for spores produced at 15(deg)C [BS15], 20(deg)C [BS20], and 30(deg)C [BS30], respectively) than by LD (0.56 [BS15], 0.58 [BS20], and 0.52 [BS30] (mu)m) and SEM (0.64 [BS15], 0.58 [BS20], and 0.70 [BS30] (mu)m) are explained in terms of the detection by QLS, LD, and SEM of different spore layers and the degree of nonsphericity of the latter.

6.
Eur Biophys J ; 23(5): 307-22, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7835317

RESUMO

Segmentally flexible macromolecules are composed of a few rigid subunits linked by joints which are more or less flexible. The dynamics in solution of this type of macromolecule present special aspects that are reviewed here. Three alternative approaches are described. One is the rigid-body treatment, which is shown to be valid for overall dynamic properties such as translational diffusion and intrinsic viscosity. Another approach is the Harvey-Wegener treatment, which is particularly suited for rotational diffusion. The simplest version of this treatment, which ignores hydrodynamic interaction (HI) effects, is found to be quite accurate when compared to a more rigorous version including HI. A third approach is the Brownian dynamics simulation that, albeit at some computational cost, might describe rigorously cases of arbitrary complexity. This technique has been used to test the approximations in the rigid-body and Harvey-Wegener treatments, thus allowing a better understanding of their validity. Brownian trajectories of simplified models such as the trumbbell and the broken rod have been simulated. The comparison of the decay rates of some correlation functions with the predictions of the two treatments leads to a general conclusion: the Harvey-Wegener treatment determines the initial rate, while the long-time behavior is dominated by the rigid-body relaxation time. As an example of application to a specific biological macromolecule, we present a simulation of an immunoglobulin molecule, showing how Brownian Dynamics can be used to predict rotational and internal dynamics. Another typical example is myosin. Literature data of hydrodynamic properties of whole myosin and the myosin rod are compared with predictions from the Harvey-Wegener and rigid-body treatments. The present situation of the problem on myosin flexibility is analyzed, and some indications are given for future experimental and simulation work.


Assuntos
Biopolímeros/química , Conformação Proteica , Proteínas/química , Imunoglobulinas/química , Modelos Estruturais , Subfragmentos de Miosina/química , Miosinas/química
7.
Biophys J ; 63(5): 1293-8, 1992 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19431854

RESUMO

(a) Bacteriophage fd is a filamentous virus that has previously been well characterized. (b) Earlier work using point mutagenesis indicated that a lysine residue at position 48 in the major coat protein plays a crucial role in interacting with the DNA and governing the assembly into an intact virion. (c) In this study the sedimentation properties (sedimentation velocity and equilibrium) of wild-type fd and two mutants substituted at lysine-48 (K48Q and K48A) were compared. (d) Both mutants are similar to each other [M(r) approximately (19.5 +/- 1.5) x 10(6)] but somewhat bigger than the wild-type [M(r) approximately (15.1 +/- 1.5) x 10(6)]. The value for the wild-type is consistent with earlier published values. (e) By combining these data with sedimentation coefficient data, it is possible to compare the contour lengths and relative flexibilities of the mutants with those of the wild-type virion. (f) The mutants are shown hydrodynamically to have larger contour lengths (as also observed by electron microscopy): the approximately 20% difference in values obtained assuming rigid particle hydrodynamics with those obtained from electron microscopy is strongly suggestive of some difference in flexibility between the wild-type and mutants.

8.
J Fluoresc ; 1(2): 129-34, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24242962

RESUMO

Using the Brownian dynamics simulation technique, we study the rotational dynamics of a semiflexible broken rod. We employ a suitable bead model with stiff springs between beads and strong forces opposing to bending, except at the joint where flexibility is variable. We consider mostly broken rods with equal arms. From the simulated Brownian trajectories we obtain the correlation function for the second order Legendre polynomial of the reorientational angle of the end-to-end vector and of the arm vector. These correlation functions are closely related to fluorescence anisotropy decay and electric birefringence decay, respectively. In the first case, the relaxation time for a completely flexible rod agrees with the Harvey-Wegener theory, and in the second, the longest relaxation time agrees well with that obtained from the rigid-body treatment over the whole range of flexibility. Furthermore, we discuss the relative importance of flexibility in both types of decay. Finally, we present results for a case with unequal arms, confirming the validity of the Harvey-Wegener theory and the rigid-body treatment.

10.
Biophys J ; 20(1): 49-67, 1977 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-901902

RESUMO

A theory of the type commonly used in polymer hydrodynamics is developed to calculate swimming properties of flagellated microorganisms. The overall shape of the particle is modeled as an array of spherical beads which act, at the same time, as frictional elements. The fluid velocity field is obtained as a function of the forces acting at each bead through Oseen-type, hydrodynamic interaction tensors. From the force and torque equilibrium conditions, such quantities as swimming velocity, angular velocity, and efficiency can be calculated. Application is made to a spherical body propelled by a helical flagellum. A recent theory by Lighthill, and earlier formulations based on tangential and normal frictional coefficients of a curved cylinder, CT and CN, are analyzed along with our theory. Although all the theories predict similar qualitative characteristics, such as optimal efficiency and the effect of fluid viscosity, they lead to rather different numerical values. In agreement with Lighthill, we found the formalisms based on CN and CT coefficients to be somewhat inaccurate, and head-flagellum interactions are shown to play an important role.


Assuntos
Flagelos/fisiologia , Modelos Teóricos , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...