Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081287

RESUMO

We report on the x-ray background rate measured with transition-edge sensors (TES) micro-calorimeters under frequency-domain multiplexing (FDM) readout as a possible technology for future experiments aiming at a direct detection of axion-like particles. Future axion helioscopes will make use of large magnets to convert axions into photons in the keV range and x-ray detectors to observe them. To achieve this, a detector array with high spectral performance and extremely low background is necessary. TES are single-photon, non-dispersive, high-resolution micro-calorimeters and represent a possible candidate for this application. We have been developing x-ray TES micro-calorimeters and an FDM readout technology in the framework of the space-borne x-ray astronomical observatories. We show that the current generation of our detectors is already a promising technology for a possible axion search experiment, having measured an x-ray background rate of 2.2(2) × 10-4 cm-2 s-1 keV-1 with a cryogenic demonstrator not optimized for this specific application. We then make a prospect to further improve the background rate down to the required value (<10-7 cm-2 s-1 keV-1) for an axion-search experiment, identifying no fundamental limits to reach such a level.

2.
Rev Sci Instrum ; 92(3): 033103, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820098

RESUMO

In the frequency-domain multiplexing (FDM) scheme, transition-edge sensors (TESs) are individually coupled to superconducting LC filters and AC biased at MHz frequencies through a common readout line. To make efficient use of the available readout bandwidth and to minimize the effect of non-linearities, the LC resonators are usually designed to be on a regular grid. The lithographic processes, however, pose a limit on the accuracy of the effective filter resonance frequencies. Off-resonance bias carriers could be used to suppress the impact of intermodulation distortions, which, nonetheless, would significantly affect the effective bias circuit and the detector spectral performance. In this paper, we present a frequency shift algorithm (FSA) to allow off-resonance readout of TESs, while preserving the on-resonance bias circuit and spectral performance, demonstrating its application to the FDM readout of an x-ray TES microcalorimeter array. We discuss the benefits in terms of mitigation of the impact of intermodulation distortions at the cost of increased bias voltage and the scalability of the algorithm to multi-pixel FDM readout. We show that with FSA, in the multi-pixel and frequencies shifted on-grid, the line noises due to intermodulation distortion are placed away from the sensitive region in the TES response and the x-ray performance is consistent with the single-pixel, on-resonance level.

3.
Rev Sci Instrum ; 87(11): 11D503, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910640

RESUMO

The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

4.
Astrobiology ; 9(1): 1-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19203238

RESUMO

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Origem da Vida , Planetas , Voo Espacial , Astronomia , Teorema de Bayes , Processamento de Imagem Assistida por Computador , Astronave , Espectrofotometria Infravermelho , Astros Celestes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...