Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(23)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067134

RESUMO

The present study evaluated the ability of KlamExtra®, an Aphanizomenon flos aquae (AFA) extract, to counteract metabolic dysfunctions due to a high fat diet (HFD) or to accelerate their reversion induced by switching an HFD to a normocaloric diet in mice with diet-induced obesity. A group of HFD mice was fed with an HFD supplemented with AFA (HFD-AFA) and another one was fed with regular chow (standard diet-STD) alone or supplemented with AFA (STD-AFA). AFA was able to significantly reduce body weight, hypertriglyceridemia, liver fat accumulation and adipocyte size in HFD mice. AFA also reduced hyperglycaemia, insulinaemia, HOMA-IR and ameliorated the glucose tolerance and the insulin response of obese mice. Furthermore, in obese mice AFA normalised the gene and the protein expression of factors involved in lipid metabolism (FAS, PPAR-γ, SREBP-1c and FAT-P mRNA), inflammation (TNF-α and IL-6 mRNA, NFkB and IL-10 proteins) and oxidative stress (ROS levels and SOD activity). Interestingly, AFA accelerated the STD-induced reversion of glucose dysmetabolism, hepatic and VAT inflammation and oxidative stress. In conclusion, AFA supplementation prevents HFD-induced dysmetabolism and accelerates the STD-dependent recovery of glucose dysmetabolism by positively modulating oxidative stress, inflammation and the expression of the genes linked to lipid metabolism.


Assuntos
Aphanizomenon , Animais , Camundongos , Aphanizomenon/metabolismo , Camundongos Obesos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Glucose , RNA Mensageiro/metabolismo
2.
Curr Issues Mol Biol ; 45(11): 8586-8606, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37998717

RESUMO

Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.

3.
G Ital Cardiol (Rome) ; 24(9): 731-739, 2023 09.
Artigo em Italiano | MEDLINE | ID: mdl-37642124

RESUMO

Aortic dissection is a life-threatening condition caused by a tear in the tunica intima which creates a false lumen into the aortic wall. Acute type B aortic dissection (TBAD) is defined by the presence of the entry tear in the aorta distal to the left subclavian artery, without ascending aorta and arch involvement, and accounts for 25-40% of all aortic dissections. Optimal medical therapy (OMT), focused on blood pressure and heart rate control, remains the gold standard treatment, especially for patients with uncomplicated TBAD, while complicated dissections require surgical therapy. Recent studies have shown that a considerable number of patients treated only with OMT develop late aorta-related complications that increase morbidity and mortality, as well as the need for surgical intervention. During the last decades, emerging evidence indicates that thoracic endovascular aortic repair (TEVAR) is safe and effective in the treatment of TBAD, both complicated and uncomplicated, with improved long-term survival outcomes and aortic remodeling in combination with OMT compared to OMT alone. However, in cases of acute uncomplicated TBAD the optimal timing for TEVAR is not entirely clarified and there is lack of long-term evidence. Therefore, the role of pre-emptive TEVAR for these patients is still uncertain and the management of acute uncomplicated TBAD remains challenging.


Assuntos
Dissecção Aórtica , Humanos , Seguimentos , Dissecção Aórtica/cirurgia , Aorta , Pressão Sanguínea , Correção Endovascular de Aneurisma
4.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37082140

RESUMO

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

5.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902167

RESUMO

Obesity and related metabolic dysfunctions are associated with neurodegenerative diseases, such as Alzheimer's disease. Aphanizomenon flos-aquae (AFA) is a cyanobacterium considered a suitable supplement for its nutritional profile and beneficial properties. The potential neuroprotective effect of an AFA extract, commercialized as KlamExtra®, including the two AFA extracts Klamin® and AphaMax®, in High-Fat Diet (HFD)-fed mice was explored. Three groups of mice were provided with a standard diet (Lean), HFD or HFD supplemented with AFA extract (HFD + AFA) for 28 weeks. Metabolic parameters, brain insulin resistance, expression of apoptosis biomarkers, modulation of astrocytes and microglia activation markers, and Aß deposition were analyzed and compared in the brains of different groups. AFA extract treatment attenuated HFD-induced neurodegeneration by reducing insulin resistance and loss of neurons. AFA supplementation improved the expression of synaptic proteins and reduced the HFD-induced astrocytes and microglia activation, and Aß plaques accumulation. Together, these outcomes indicate that regular intake of AFA extract could benefit the metabolic and neuronal dysfunction caused by HFD, decreasing neuroinflammation and promoting Aß plaques clearance.


Assuntos
Aphanizomenon , Suplementos Nutricionais , Doenças Neurodegenerativas , Animais , Camundongos , Aphanizomenon/química , Astrócitos/efeitos dos fármacos , Dieta Hiperlipídica , Resistência à Insulina , Microglia/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle
6.
Environ Int ; 171: 107733, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628858

RESUMO

Cigarette butts (CBs), one of the most common litter items found on beaches, represent a still unexplored environmental hazard. This study aimed at a multidisciplinary characterization of their toxicological risks on marine organisms integrating chemical analyses of released compounds with a wide panel of biological responses, such as ecotoxicological bioassays on species of different trophic positions, molecular responses in an ex vivo model (Precision-Cut Tissue Slices, PCTS of mussels digestive glands), bioavailability and cellular biomarkers in mussels exposed to CBs in laboratory experiments. Trace metals, aliphatic and polycyclic aromatic hydrocarbons, nicotine and cotinine were released in artificial seawater after 24 h which determined a significant inhibition of bacterial bioluminescence, oyster embryo development and growth in different algal species. Modulation of peroxisomal proliferation and antioxidant gene expression was observed in mussels PCTS, while the in vivo exposure determined accumulation of chemicals and significant alterations of immune system, antioxidant and neurotoxic responses, peroxisomal proliferation and genotoxic damage. Using a quantitative Weight of Evidence model, the risks of CBs to the marine environment were summarized, highlighting the importance of integrating chemical analyses, batteries of ecotoxicological bioassays, molecular and cellular biomarkers to assess the impact of these hazardous materials on marine environment.


Assuntos
Bivalves , Produtos do Tabaco , Poluentes Químicos da Água , Animais , Organismos Aquáticos/metabolismo , Antioxidantes/análise , Poluentes Químicos da Água/análise , Biomarcadores/metabolismo , Monitoramento Ambiental
7.
Cell Mol Neurobiol ; 43(5): 1941-1956, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36056992

RESUMO

Alzheimer disease (AD) is a multifactorial and age-dependent neurodegenerative disorder, whose pathogenesis, classically associated with the formation of senile plaques and neurofibrillary tangles, is also dependent on oxidative stress and neuroinflammation chronicization. Currently, the standard symptomatic therapy, based on acetylcholinesterase inhibitors, showed a limited therapeutic potential, whereas disease-modifying treatment strategies are still under extensive research. Previous studies have demonstrated that Oxotremorine-M (Oxo), a non-selective muscarinic acetylcholine receptors agonist, exerts neurotrophic functions in primary neurons, and modulates oxidative stress and neuroinflammation phenomena in rat brain. In the light of these findings, in this study, we aimed to investigate the neuroprotective effects of Oxo treatment in an in vitro model of AD, represented by differentiated SH-SY5Y neuroblastoma cells exposed to Aß1-42 peptide. The results demonstrated that Oxo treatment enhances cell survival, increases neurite length, and counteracts DNA fragmentation induced by Aß1-42 peptide. The same treatment was also able to block oxidative stress and mitochondria morphological/functional impairment associated with Aß1-42 cell exposure. Overall, these results suggest that Oxo, by modulating cholinergic neurotransmission, survival, oxidative stress response, and mitochondria functionality, may represent a novel multi-target drug able to achieve a therapeutic synergy in AD. Illustration of the main pathological hallmarks and mechanisms underlying AD pathogenesis, including neurodegeneration and oxidative stress, efficiently counteracted by treatment with Oxo, which may represent a promising therapeutic molecule. Created with BioRender.com under academic license.


Assuntos
Doença de Alzheimer , Neuroblastoma , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Doença de Alzheimer/tratamento farmacológico , Oxotremorina/farmacologia , Doenças Neuroinflamatórias , Acetilcolinesterase , Peptídeos beta-Amiloides , Neuroblastoma/patologia , Receptores Muscarínicos
8.
Biology (Basel) ; 11(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741464

RESUMO

Insulin was discovered and isolated from the beta cells of pancreatic islets of dogs and is associated with the regulation of peripheral glucose homeostasis. Insulin produced in the brain is related to synaptic plasticity and memory. Defective insulin signaling plays a role in brain dysfunction, such as neurodegenerative disease. Growing evidence suggests a link between metabolic disorders, such as diabetes and obesity, and neurodegenerative diseases, especially Alzheimer's disease (AD). This association is due to a common state of insulin resistance (IR) and mitochondrial dysfunction. This review takes a journey into the past to summarize what was known about the physiological and pathological role of insulin in peripheral tissues and the brain. Then, it will land in the present to analyze the insulin role on mitochondrial health and the effects on insulin resistance and neurodegenerative diseases that are IR-dependent. Specifically, we will focus our attention on the quality control of mitochondria (MQC), such as mitochondrial dynamics, mitochondrial biogenesis, and selective autophagy (mitophagy), in healthy and altered cases. Finally, this review will be projected toward the future by examining the most promising treatments that target the mitochondria to cure neurodegenerative diseases associated with metabolic disorders.

9.
Pharmaceutics ; 14(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35335861

RESUMO

The management of acute and chronic wounds is still a socioeconomic burden for society due to the lack of suitable tools capable of supporting all the healing phases. The exponential spread of diabetes worldwide and the consequent increase of complicated diabetic ulcers require further efforts to develop scalable, low-cost, and easy-to-use treatments for tackling this emergency. Recently, we explored the fabrication of a polyvinylpyrrolidone/hyaluronic acid-based bilayer wound dressing, characterizing its physicochemical features and detailing its excellent antimicrobial activity. Here, we further demonstrate its biocompatibility on fibroblasts, keratinocytes, and red blood cells. The bilayer shows anti-inflammatory properties, statistically reducing the level of IL-6, IL-1ß, and TNF-α, and a capacity to accelerate wound healing in vitro and in healthy and diabetic mice models compared to untreated mice. The outcomes suggest that this bilayer material can be an effective tool for managing different skin injuries.

10.
Nutrients ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215406

RESUMO

The purpose of the present study was to evaluate the impact of long-term honey ingestion on metabolic disorders and neurodegeneration in mice fed a high-fat diet (HFD). Three groups of mice were fed with a standard diet (STD), HFD or HFD supplemented with honey (HFD-H) for 16 weeks. Biochemical, histological, Western blotting, RT-PCR and Profiler PCR array were performed to assess metabolic parameters, peripheral and central insulin resistance and neurodegeneration. Daily honey intake prevented the HFD-induced glucose dysmetabolism. In fact, it reduced plasma fasting glucose, insulin and leptin concentrations and increased adiponectin levels. It improved glucose tolerance, insulin sensitivity and HOMA index without affecting plasma lipid concentration. HFD mice showed a significantly higher number of apoptotic nuclei in the superficial and deep cerebral cortex, upregulation of Fas-L, Bim and P27 (neuronal pro-apoptotic markers) and downregulation of Bcl-2 and BDNF (anti-apoptotic factors) in comparison with STD- and HFD-H mice, providing evidence for honey neuroprotective effects. PCR-array analysis showed that long-term honey intake increased the expression of genes involved in insulin sensitivity and decreased genes involved in neuroinflammation or lipogenesis, suggesting improvement of central insulin resistance. The expressions of p-AKT and p-GSK3 in HFD-H mice, which were decreased and increased, respectively, in HFD mouse brain, index of central insulin resistance, were similar to STD animals supporting the ability of regular honey intake to protect brain neurons from insulin resistance. In conclusion, the present results provide evidence for the beneficial preventative impact of regular honey ingestion on neuronal damage caused by HFD.


Assuntos
Mel , Resistência à Insulina , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Glucose , Quinase 3 da Glicogênio Sintase , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo
11.
Front Physiol ; 12: 730048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671273

RESUMO

Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.

12.
Mitochondrion ; 60: 178-188, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34454074

RESUMO

Altered insulin signaling and insulin resistance are considered the link between Alzheimer's disease (AD) and metabolic syndrome. Here, by using an in vitro and an in vivo model, we investigated the relationship between these disorders focusing on neuronal mitochondrial dysfunction and mitophagy. In vitro Aß insult induced the opening of mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (ΔΨm) loss, and apoptosis while insulin addition ameliorated these dysfunctions. The same alterations were detected in a 16 weeks of age mouse model of diet-induced obesity and insulin resistance. In addition, we detected an increase of fission related proteins and activation of mitophagy, proved by the rise of PINK1 and Parkin proteins. Nevertheless, in vitro, the increase of p62 and LC3 indicated an alteration in autophagy, while, in vivo decreased expression of p62 and increase of LC3 suggested removing of damaged mitochondria. Finally, in aged mice (28 and 48 weeks), the data indicated impairment of mitophagy and suggested the accumulation of damaged mitochondria. Taken together these outcomes indicate that alteration of the insulin pathway affects mitochondrial integrity, and effective mitophagy is age-dependent.


Assuntos
Insulina/metabolismo , Mitocôndrias/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
Antioxidants (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803125

RESUMO

Ocean-warming and acidification jeopardize Antarctic marine species, adapted to cold and constant conditions and naturally exposed to high pro-oxidant pressures and cadmium (Cd) bioavailability. The aim of this study was to investigate if projected temperature increase and pH reduction may affect the accumulation and the effects of Cd in the rockcod Trematomus bernacchii. Organisms were exposed for 14 days to six scenarios, combining environmental or increased temperature (-1 °C, +1 °C) and control or reduced pH (8.05, 7.60), either with or without Cd (40 µg/L). Responses in liver and gills were analyzed at different levels, including mRNA and functional measurements of metallothioneins and of a wide battery of antioxidants, integrated with the evaluation of the total antioxidant capacity and onset of oxidative damages. In the gills, metallothioneins and mRNA of antioxidant genes (nrf2, keap1, cat, gpx1) increased after Cd exposure, but such effects were softened by warming and acidification. Antioxidants showed slighter variations at the enzymatic level, while Cd caused glutathione increase under warming and acidified scenarios. In the liver, due to higher basal antioxidant protection, limited effects were observed. Genotoxic damage increased under the combined stressors scenario. Overall results highlighted the modulation of the oxidative stress response to Cd by multiple stressors, suggesting the vulnerability of T. bernacchii under predicted ocean change scenarios.

14.
J Nanobiotechnology ; 19(1): 6, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407593

RESUMO

BACKGROUND: Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, a subcellular fraction of isolated synaptic terminal that contains mitochondria, as mitochondrial delivery systems. RESULTS: Synaptosome preparation was validated by the presence of Synaptophysin and PSD95. Synaptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/ml. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein-protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as a vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. CONCLUSIONS: Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, the replacement of affected mitochondria with healthy ones could be a potential therapy for treating neuronal mitochondrial dysfunction-related diseases.


Assuntos
Mitocôndrias/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Animais , Citocromos c , DNA Mitocondrial , Sistemas de Liberação de Medicamentos , Homeostase , Masculino , Potenciais da Membrana , Domínios e Motivos de Interação entre Proteínas , Ratos , Frações Subcelulares
15.
Nutrients ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256017

RESUMO

BACKGROUND: Aphanizomenon flos-aquae (AFA) is a unicellular cyanobacterium considered to be a "superfood" for its complete nutritional profile and beneficial properties. We investigated possible beneficial effects of an AFA extract, commercialized as AphaMax®, containing concentrated amount of phycocyanins and phytochrome, in 2,4 dinitrobenzensulfonic acid(DNBS)-induced colitis in rats. METHODS: Effects of preventive oral treatment of AphaMax® (20, 50 or 100 mg/kg/day) in colitic rats were assessed and then macroscopic and microscopic analyses were performed to evaluate the inflammation degree. Myeloperoxidase (MPO) activity and NF-κB, pro-inflammatory citockines, cycloxygenase-2 (COX-2), and inducible NOS (iNOS) levels of expression were determined, as Reactive Oxygen Species (ROS) and nitrite levels. RESULTS: AphaMax® treatment attenuated the severity of colitis ameliorating clinical signs. AphaMax® reduced the histological colonic damage and decreased MPO activity, NF-κB activation, as well as iNOS and COX-2 expression. AphaMax® treatment improved the altered immune response associated with colonic inflammation reducing IL-1ß, IL-6 expression. Lastly, AphaMax® reduced oxidative stress, decreasing ROS and nitrite levels. CONCLUSIONS: Preventive treatment with AphaMax® attenuates the severity of the inflammation in DNBS colitis rats involving decrease of the NF-kB activation, reduction of iNOS and COX-2 expression, and inhibition of oxidative stress. Due its anti-inflammatory and antioxidant proprieties AphaMax® could be a good candidate as a complementary drug in inflammatory bowel disease (IBD) treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Aphanizomenon , Colite/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Modelos Animais de Doenças , Intestinos/efeitos dos fármacos , Masculino , Ratos
16.
Mar Environ Res ; 160: 104984, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907722

RESUMO

The aim of the present work is to demonstrate the practical importance of a multidisciplinary approach and weighted criteria to synthesize and integrate different typologies of data (or lines of evidence, LOEs), including chemical levels in marine sediments, their bioavailability to specific indicator species, ecotoxicological effects measured through subcellular biomarkers and batteries of bioassays, and potential impacts of pollution on local benthic communities. The area of Bagnoli (Gulf of Naples, Southern Italy) was selected as a model case-study, as it is a coastal area chronically impacted by massive industrial contamination (trace metals and hydrocarbons), and dismissed decades ago without any subsequent remediation or habitat restoration. The results of each LOE were elaborated to provide specific hazard indices before their overall integration in a weight of evidence (WOE) evaluation. Levels of some trace metals and PAHs revealed a severe contamination in the entire study area. Bioavailability of hydrocarbons was evident particularly for high molecular weight PAHs, which also caused significant variations of cellular biomarkers, such as cytochrome P450 metabolization in fish, lysosomal membrane destabilization in mussels, genotoxic effects both in fish and molluscs. The results of a battery of bioassays indicated less marked responses compared to those obtained from chemical and biomarkers analyses, with acute toxicity still present in sediments close to the source of contamination. The analysis of benthic assemblages showed limited evidence of impact in the whole area, indicating a good functioning of local ecosystems at chronic contamination. Overall, the results of this study confirm the need of combining chemical and biological data, the quantitative characterization of various typologies of hazard and the importance of assessing an integrated environmental WOE risk, to orientate specific and scientifically-supported management options in industrialized areas.


Assuntos
Sedimentos Geológicos , Gestão de Riscos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Itália
17.
Eur J Neurosci ; 52(8): 3944-3950, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32323378

RESUMO

Obesity is a complex, chronic, and multifactorial condition characterized by abnormal fat accumulation in tissues and organs and inducing negative effects on human health. Alzheimer's disease is a progressive and irreversible neurodegenerative disease, associated with amyloid plaques and neurofibrillary tangles in the brain. The correlation between obesity and Alzheimer's disease has been discovered, but the molecules and molecular mechanisms linking these conditions are not yet fully elucidated. In this review, we focused on the most important processes linking the fat accumulation and the alterations of the brain structure and functions.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Obesidade , Placa Amiloide
18.
Antioxidants (Basel) ; 9(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326575

RESUMO

:Obesity has been associated with neurodegeneration and cognitive dysfunctions. Recent data showed that pistachio consumption is able to prevent and ameliorate dyslipidemia, hepatic steatosis, systemic and adipose tissue inflammation in mice fed a high-fat diet (HFD). The present study investigated the neuroprotective effects of pistachio intake in HFD mice. Three groups of mice were fed a standard diet (STD), HFD, or HFD supplemented with pistachio (HFD-P) for 16 weeks. Metabolic parameters (oxidative stress, apoptosis, and mitochondrial dysfunction) were analyzed by using specific assays and biomarkers. The pistachio diet significantly reduced the serum levels of triglycerides and cholesterol in the HFD model. No difference was observed in the index of insulin resistance between HFD and HFD-P. A higher number of fragmented nuclei were found in HFD cerebral cortex compared to STD and HFD-P. A decrease in reactive oxygen species, singlet oxygen and phosphorylated extracellular signal-regulated kinase, and an increase of superoxide dismutase 2 and heme oxygenase expression were found in the brains of the HFD-P samples compared to HFD. Furthermore, the impaired mitochondrial function found in HFD brain was partially recovered in HFD-P mice. These results suggest that the regular intake of pistachio may be useful in preventing obesity-related neurodegeneration, being able to reduce both metabolic and cellular dysfunctions.

19.
J Colloid Interface Sci ; 574: 20-32, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32298978

RESUMO

HYPOTHESIS: Certain biobased polymers or natural compounds can be effectively used in superhydrophobic coating formulations to reduce environmental impact of fluorinated compounds and related bioaccumulation and toxicity problems. Many environmental concerns have thus far been raised in relation to toxicity of solvents and C8 fluorine chemicals. Elimination of these important elements from non-wettable coating formulations can jeopardize non-wetting performance significantly. However, intelligent and innovative approaches that introduce ecofriendly resins and compounds in superhydrophobic coating formulations without significantly altering self-cleaning superhydrophobicity are possible and being reported. EXPERIMENTS: Superhydrophobic coatings based on a biomass-derived bioresin polyfurfuryl alcohol (PFA) were prepared. The coatings were made by blending PFA resin with a C6 perfluorinated acrylic copolymer PFAC in solution and subsequent spray coating. Silica nanoparticles were also added in order to repel some common oils. Coating morphology, chemical and thermal properties, biocompatibility and bacterial adhesion properties were studied in detail. FINDINGS: Coatings having 50 wt% bioresin revealed equal water-repellency performance comapred to 100% PFAC-based coatings. Healthy cell growth was maintained on the coatings with no cell toxicity using human cell line, HeLa cells. Superhydrophobic coatings demonstrated very low bacterial adhesion to E. coli, S. aureus and Ps. aeruginosa indicating promising biofouling resistance. The coatings did not require any post thermal annealing. This would cause significant energy savings for large-scale adaptation.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Furanos/farmacologia , Polímeros/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Incrustação Biológica/prevenção & controle , Furanos/síntese química , Furanos/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície
20.
Biomacromolecules ; 21(2): 910-920, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31940189

RESUMO

Multifunctional bioplastics have been prepared by amorphous reassembly of cellulose, hemicelluloses (xylan), and hydrolyzed lignin. For this, the biopolymers were dissolved in a trifluoroacetic acid-trifluoroacetic anhydride mixture and blended in different percentages, simulating those found in natural woods. Free-standing and flexible films were obtained after the complete evaporation of the solvents. By varying xylan and hydrolyzed lignin contents, the physical properties were easily tuned. In particular, higher proportions of hydrolyzed lignin improved hydrodynamics, oxygen barrier, grease resistance, antioxidant, and antibacterial properties, whereas a higher xylan content was related to more ductile mechanical behavior, comparable to synthetic and bio-based polymers commonly used for packaging applications. In addition, these bioplastics showed high biodegradation rates in seawater. Such new polymeric materials are presented as alternatives to common man-made petroleum-based plastics used for food packaging.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Lignina/química , Plásticos/química , Madeira/química , Xilanos/química , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Antioxidantes/administração & dosagem , Antioxidantes/química , Materiais Biocompatíveis/administração & dosagem , Celulose/administração & dosagem , Embalagem de Alimentos/métodos , Hidrólise , Lignina/administração & dosagem , Xilanos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...