Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 85(8): 920-929, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33045952

RESUMO

Unlike the OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH), which is an essential enzyme present in all animal tissues, expression of the DHTKD1-encoded isoenzyme, 2-oxoadipate dehydrogenase (OADH), depends on a number of factors, and mutant DHTKD1 phenotypes are rarely manifested. Physiological significance of OADH is also obscured by the fact that both isoenzymes transform 2-oxoglutarate and 2-oxoadipate. By analogy with other members of the 2-oxo acid dehydrogenases family, OADH is assumed to be a component of the multienzyme complex that catalyzes oxidative decarboxylation of 2-oxoadipate. This study aims at molecular characterization of OADH from animal tissues. Phylogenetic analysis of 2-oxo acid dehydrogenases reveals OADH only in animals and Dictyostelium discoideum slime mold, within a common branch with bacterial OGDH. Examination of partially purified animal OADH by immunoblotting and mass spectrometry identifies two OADH isoforms with molecular weights of about 130 and 70 kDa. These isoforms are not observed upon the expression of human DHTKD1 protein in either bacterial or yeast system, where the synthesized OADH is of expected molecular weight (about 100 kDa). Thus, the OADH isoforms present in animal tissues, may result from the animal-specific regulation of the DHTKD1 expression and/or posttranslational modifications of the encoded protein. Mapping of the peptides identified in the OADH preparations, onto the protein structure suggests that the 70-kDa isoform is truncated at the N-terminus, but retains the active site. Since the N-terminal domain of OGDH is required for the formation of the multienzyme complex, it is possible that the 70-kDa isoform catalyzes non-oxidative transformation of dicarboxylic 2-oxo acids that does not require the multienzyme structure. In this case, the ratio of the OADH isoforms in animal tissues may correspond to the ratio between the oxidative and non-oxidative decarboxylation of 2-oxoadipate.


Assuntos
Encéfalo/metabolismo , Escherichia coli/metabolismo , Complexo Cetoglutarato Desidrogenase/química , Fígado/metabolismo , Miocárdio/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Domínio Catalítico , Dictyostelium/genética , Dictyostelium/metabolismo , Escherichia coli/genética , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Masculino , Oxirredução , Filogenia , Ratos , Ratos Wistar , Saccharomyces cerevisiae/genética
2.
Eur J Biochem ; 268(24): 6508-25, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11737206

RESUMO

Serine hydroxymethyltransferase (SHMT) is a member of the fold type I family of vitamin B6-dependent enzymes, a group of evolutionarily related proteins that share the same overall fold. The reaction catalysed by SHMT, the transfer of Cbeta of serine to tetrahydropteroylglutamate (H4PteGlu), represents in the cell an important link between the breakdown of amino acids and the metabolism of folates. In the absence of H4PteGlu and when presented with appropriate substrate analogues, SHMT shows a broad range of reaction specificity, being able to catalyse at appreciable rates retroaldol cleavage, racemase, aminotransferase and decarboxylase reactions. This apparent lack of specificity is probably a consequence of the particular catalytic apparatus evolved by SHMT. An interesting question is whether other fold type I members that normally catalyse the reactions which for SHMT could be considered as 'forced errors', may be close relatives of this enzyme and have a catalytic apparatus with the same basic features. As shown in this study, l-threonine aldolase from Escherichia coli is able to catalyse the same range of reactions catalysed by SHMT, with the exception of the serine hydroxymethyltransferase reaction. This observation strongly suggests that SHMT and l-threonine aldolase are closely related enzymes specialized for different functions. An evolutionary analysis of the fold type I enzymes revealed that SHMT and l-threonine aldolase may actually belong to a subgroup of closely related proteins; fungal alanine racemase, an extremely close relative of l-threonine aldolase, also appears to be a member of the same subgroup. The construction of three-dimensional homology models of l-threonine aldolase from E. coli and alanine racemase from Cochliobolus carbonum, and their comparison with the SHMT crystal structure, indicated how the tetrahydrofolate binding site might have evolved and offered a starting point for further investigations.


Assuntos
Alanina Racemase/metabolismo , Ascomicetos/enzimologia , Glicina Hidroximetiltransferase/metabolismo , Alanina Racemase/química , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Evolução Molecular , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/isolamento & purificação , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Fosfato de Piridoxal/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
J Mol Biol ; 310(4): 817-26, 2001 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-11453690

RESUMO

Escherichia coli pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate by the FMN oxidation of pyridoxine 5'-phosphate forming FMNH(2) and H(2)O(2). Recent studies have shown that in addition to the active site, pyridoxine 5'-phosphate oxidase contains a non-catalytic site that binds pyridoxal 5'-phosphate tightly. The crystal structure of pyridoxine 5'-phosphate oxidase from E. coli with one or two molecules of pyridoxal 5'-phosphate bound to each monomer has been determined to 2.0 A resolution. One of the pyridoxal 5'-phosphate molecules is clearly bound at the active site with the aldehyde at C4' of pyridoxal 5'-phosphate near N5 of the bound FMN. A protein conformational change has occurred that partially closes the active site. The orientation of the bound pyridoxal 5'-phosphate suggests that the enzyme catalyzes a hydride ion transfer between C4' of pyridoxal 5'-phosphate and N5 of FMN. When the crystals are soaked with excess pyridoxal 5'-phosphate an additional molecule of this cofactor is also bound about 11 A from the active site. A possible tunnel exists between the two sites so that pyridoxal 5'-phosphate formed at the active site may transfer to the non-catalytic site without passing though the solvent.


Assuntos
Escherichia coli/enzimologia , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidase/química , Piridoxaminafosfato Oxidase/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Mononucleotídeo de Flavina/metabolismo , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/química , Água/metabolismo
4.
Structure ; 8(7): 751-62, 2000 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10903950

RESUMO

BACKGROUND: Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate (PLP), a cofactor used by many enzymes involved in amino acid metabolism. The enzyme oxidizes either the 4'-hydroxyl group of pyridoxine 5'-phosphate (PNP) or the 4'-primary amine of pyridoxamine 5'-phosphate (PMP) to an aldehyde. PNPOx is a homodimeric enzyme with one flavin mononucleotide (FMN) molecule non-covalently bound to each subunit. A high degree of sequence homology among the 15 known members of the PNPOx family suggests that all members of this group have similar three-dimensional folds. RESULTS: The crystal structure of PNPOx from E. coli has been determined to 1.8 A resolution. The monomeric subunit folds into an eight-stranded beta sheet surrounded by five alpha-helical structures. Two monomers related by a twofold axis interact extensively along one-half of each monomer to form the dimer. There are two clefts at the dimer interface that are symmetry-related and extend from the top to the bottom of the dimer. An FMN cofactor that makes interactions with both subunits is located in each of these two clefts. CONCLUSIONS: The structure is quite similar to the recently deposited 2.7 A structure of Saccharomyces cerevisiae PNPOx and also, remarkably, shares a common structural fold with the FMN-binding protein from Desulfovibrio vulgaris and a domain of chymotrypsin. This high-resolution E. coli PNPOx structure permits predictions to be made about residues involved in substrate binding and catalysis. These predictions provide testable hypotheses, which can be answered by making site-directed mutants.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/enzimologia , Mononucleotídeo de Flavina/química , Piridoxaminafosfato Oxidase/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Quimotripsina/química , Cristalografia por Raios X , Desulfovibrio vulgaris/enzimologia , Dimerização , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Piridoxaminafosfato Oxidase/metabolismo , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
5.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 2): 241-5, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10666617

RESUMO

Catalase (E.C. 1.11.1.6) was purified from human erythrocytes and crystallized in three different forms: orthorhombic, hexagonal and tetragonal. The structure of the orthorhombic crystal form of human erythrocyte catalase (HEC), with space group P2(1)2(1)2(1) and unit-cell parameters a = 84.9, b = 141.7, c = 232.5 A, was determined and refined with 2.75 A resolution data. Non-crystallographic symmetry restraints were employed and the resulting R value and R(free) were 0.206 and 0.272, respectively. The overall structure and arrangement of HEC molecules in the orthorhombic unit cell were very similar to those of bovine liver catalase (BLC). However, no NADPH was observed in the HEC crystal and a water was bound to the active-site residue His75. Conserved lattice interactions suggested a common growth mechanism for the orthorhombic crystals of HEC and BLC.


Assuntos
Catalase/sangue , Catalase/química , Eritrócitos/enzimologia , Animais , Catalase/isolamento & purificação , Bovinos , Cristalização , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína , Solventes
6.
Arch Biochem Biophys ; 372(2): 271-9, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10600164

RESUMO

Serine hydroxymethyltransferase purified from rabbit liver cytosol has at least two Asn residues (Asn(5) and Asn(220)) that are 67 and 30% deamidated, respectively. Asn(5) is deamidated equally to Asp and isoAsp, while Asn(220) is deamidated only to isoAsp. To determine the effect of these Asn deamidations on enzyme activity and stability a recombinant rabbit liver cytosolic serine hydroxymethyltransferase was expressed in Escherichia coli over a 5-h period. About 90% of the recombinant enzyme could be isolated with the two Asn residues in a nondeamidated form. Compared with the enzyme isolated from liver the recombinant enzyme had a 35% increase in catalytic activity but exhibited no significant changes in either affinity for substrates or stability. Introduction of Asp residues for either Asn(5) or Asn(220) did not significantly alter activity or stability of the mutant forms. In vitro incubation of the recombinant enzyme at 37 degrees C and pH 7.3 resulted in the rapid deamidation of Asn(5) to both Asp and isoAsp with a t(1/2) of 50-70 h, which is comparable to the rate found with small flexible peptides containing the same sequence. The t(1/2) for deamidation of Asn(220) was at least 200 h. This residue may become deamidated only after some unfolding of the enzyme. The rates for deamidation of Asn(5) and Asn(220) are consistent with the structural environment of the two Asn residues in the native enzyme. There are also at least two additional deamidation events that occur during prolonged incubation of the recombinant enzyme.


Assuntos
Amidas/metabolismo , Asparagina/metabolismo , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Animais , Asparagina/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Catálise , Estabilidade Enzimática , Escherichia coli/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/isolamento & purificação , Humanos , Ponto Isoelétrico , Cinética , Fígado/citologia , Fígado/enzimologia , Mutagênese Sítio-Dirigida , Mutação/genética , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Relação Estrutura-Atividade , Tetra-Hidrofolatos/metabolismo
7.
J Struct Biol ; 127(1): 88-91, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10479623

RESUMO

Pyridoxine 5'-phosphate oxidase (PNP Ox) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate. The 53-kDa homodimeric enzyme contains a noncovalently bound flavin mononucleotide (FMN) on each monomer. Three crystal forms of Escherichia coli PNP Ox complexed with FMN have been obtained at room temperature. The first crystal form belongs to trigonal space group P3(1)21 or P3(2)21 with unit cell dimensions a = b = 64.67A, c = 125.64A, and has one molecule of the complex (PNP Ox-FMN) per asymmetric unit. These crystals grow very slowly to their maximum size in about 2 to 4 months and diffract to about 2.3 A. The second crystal form belongs to tetragonal space group P4(1) or P4(3) with unit cell dimensions a = b = 54.92A, c = 167.65A, and has two molecules of the complex per asymmetric unit. The crystals reach their maximum size in about 5 weeks and diffract to 2.8 A. A third crystal form with a rod-like morphology grows faster and slightly larger than the other two forms, but diffracts poorly and could not be characterized by X-ray analysis. The search for heavy-atom derivatives for the first two crystal forms to solve the structure is in progress.


Assuntos
Cristalização , Mononucleotídeo de Flavina/química , Piridoxaminafosfato Oxidase/química , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/enzimologia , Mononucleotídeo de Flavina/metabolismo , Ligação Proteica , Conformação Proteica , Piridoxaminafosfato Oxidase/metabolismo , Proteínas Recombinantes
8.
Protein Expr Purif ; 13(2): 177-83, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9675060

RESUMO

A rabbit liver cDNA library in phage lambdagt10 was screened using the coding cDNA for human cytosolic serine hydroxymethyltransferase. A clone of 1754 bp was isolated and the nucleotide sequence showed an open reading frame of 1455 bp, which coded for rabbit cytosolic serine hydroxymethyltransferase and was flanked by 12 bp at the 5' end and 287 bp at the 3' end. The full-length cDNA was then cloned into a pET22b vector as a NdeI-EcoRI insert. HMS174(DE3) cells were transformed with this plasmid and, after induction with isopropyl beta-D-thiogalactopyranoside, expressed a catalytically active serine hydroxymethyltransferase. The enzyme was purified and shown to be the expressed rabbit enzyme lacking the first methionine residue. Spectral characteristics of the bound pyridoxal phosphate and kinetic constants for the natural substrates L-serine and tetrahydrofolate were essentially identical to the values obtained previously for the rabbit cytosolic enzyme. The pattern of bands shown by the pure recombinant enzyme on an isoelectric focusing gel containing 6 M urea showed a major band and a minor band representing about 15-20% of the protein. Upon incubation of the recombinant enzyme at pH 7.3 and 37 degreesC, three new bands were observed on isoelectric focusing with the concomitant formation of isoaspartyl residues, as determined by reactivity with protein isoaspartyl methyltransferase. These results are consistent with deamidation of Asn residues to isoaspartyl during the in vitro incubation. The enzyme purified from rabbit liver has previously been shown to contain isoaspartyl residues.


Assuntos
Citosol/enzimologia , Glicina Hidroximetiltransferase/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Animais , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Clonagem Molecular , Escherichia coli/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Focalização Isoelétrica , Isomerismo , Cinética , Fosfato de Piridoxal/análise , Coelhos , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Espectrofotometria , Tetra-Hidrofolatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...