Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38139991

RESUMO

Papain (an enzyme from the latex of Carica papaya) is an interesting natural bioactive macromolecule used as therapeutic alternative for wound healing due to debridement action in devitalized or necrotic tissues. However, its use in high doses can induce potential skin irritation and side effects. In this study, experiments explored the ability of chitosan membrane to immobilize papain, consequently improving enzymatic activity and controlling enzyme release. Papain-loading capacity was tested via experiments of force microscopy (AFM), scanning electron microscopy (SEM-FEG), and X-ray diffraction analyses. Fourier transform infrared spectroscopy and thermal analyses assessed the enzyme interactions with the copolymer. The investigation of the feasibility of membranes included pH on the surface, elasticity, and breaking strength measurements. The surface wettability and swelling capacity of different formulations revealed the best formulation for in vitro papain release experiments. The membranes had a transparent, rough, crystalline characteristic, which was homogeneous with the membrane within the neutrality. The immobilization of papain in the chitosan membrane resulted in a decrease in the vibration band characteristic of pure papain, suggesting a displacement in the vibration bands in the FTIR spectrum. The presence of papain decreased hydrophobicity on the surface of the membrane and disturbed the membrane's ability to swell. Chitosan membranes containing papain 2.5% (0.04 g) and 5.0% (0.08 g) preserved feasible properties and improved the enzymatic activity compared (0.87 ± 0.12 AU/mg and 1.59 ± 0.10 AU/mg) with a free papain sample (0.0042 ± 0.001 AU/mg). Concentrations of over 10% (0.16 g) led to phase separation into membranes. Chitosan membranes exhibited a slow papain release behavior adjusted via the Higushi model. The experimental achievements suggest a novel and promising method for the enhancement of papain. The results indicate the potential for prolonged bioactivity for use on wounds.

2.
Carbohydr Polym ; 248: 116724, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919548

RESUMO

In this study, the ability of different beta-cyclodextrins to facilitate homogeneous dispersion of triamcinolone acetonide (TA) into chitosan membranes is assessed. Drug loading was assessed through atomic force microscopy (AFM), scanning electron microscopy (MEV-FEG), and X-ray diffraction analyses. Drug interactions with the co-polymer were investigated with Fourier transform infrared spectroscopy, thermal analyses. Swelling assay, and in vitro drug release experiment were used to assess TA release behavior. Undispersed particles of drug were observed to remain in the simple chitosan membranes. Hydroxypropyl-ß-cyclodextrin enabled the dispersion of TA into chitosan membranes and subsequent sustained drug release. In addition, the membrane performance as a drug delivery device is improved by adding specified amounts of the co-solvent triethanolamine. The experimental data presented in this study confirm the utility of our novel and alternative approach for obtaining a promising device for slow and controlled release of glucocorticoids, such as triamcinolone acetonide, for topical ulcerations.


Assuntos
Corticosteroides/administração & dosagem , Quitosana/química , Preparações de Ação Retardada/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , beta-Ciclodextrinas/química , Corticosteroides/química , Corticosteroides/farmacocinética , Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Glucocorticoides/administração & dosagem , Glucocorticoides/química , Glucocorticoides/farmacocinética , Membranas Artificiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Polímeros/química , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triancinolona/administração & dosagem , Triancinolona/química , Triancinolona/farmacocinética , Difração de Raios X
3.
Int J Mol Sci ; 20(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083590

RESUMO

Cationic polymeric nanoparticles (NPs) have the ability to overcome biological membranes, leading to improved efficacy of anticancer drugs. The modulation of the particle-cell interaction is desired to control this effect and avoid toxicity to normal cells. In this study, we explored the surface functionalization of cationic polymethylmethacrylate (PMMA) NPs with two natural compounds, sialic acid (SA) and cholesterol (Chol). The performance of benznidazole (BNZ) was assessed in vitro in the normal renal cell line (HEK-293) and three human cancer cell lines, as follows: human colorectal cancer (HT-29), human cervical carcinoma (HeLa), and human hepatocyte carcinoma (HepG2). The structural properties and feasibility of NPs were evaluated and the changes induced by SA and Chol were determined by using multiple analytical approaches. Small (<200 nm) spherical NPs, with a narrow size distribution and high drug-loading efficiency were prepared by using a simple and reproducible emulsification solvent evaporation method. The drug interactions in the different self-assembled NPs were assessed by using Fourier transform-infrared spectroscopy. All formulations exhibited a slow drug-release profile and physical stability for more than 6 weeks. Both SA and Chol changed the kinetic properties of NPs and the anticancer efficacy. The feasibility and potential of SA/Chol-functionalized NPs has been demonstrated in vitro in the HEK-293, HepG2, HeLa, and HT-29 cell lines as a promising system for the delivery of BNZ.


Assuntos
Antineoplásicos/farmacologia , Fenômenos Químicos , Colesterol/química , Liberação Controlada de Fármacos , Ácido N-Acetilneuramínico/química , Nanopartículas/química , Nitroimidazóis/química , Cátions , Morte Celular/efeitos dos fármacos , Composição de Medicamentos , Células HEK293 , Células HT29 , Células HeLa , Humanos , Cinética , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...