Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Probiotics Antimicrob Proteins ; 15(3): 601-613, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34817804

RESUMO

This study assessed the effects of a mixed formulation containing Limosilactobacillus (L.) fermentum 139, L. fermentum 263, and L. fermentum 296 on cardiometabolic parameters, inflammatory markers, short-chain fatty acid (SCFA) fecal contents, and oxidative stress in colon, liver, heart, and kidney tissues of female rats fed a high-fat diet (HFD). Female Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6). L. fermentum formulation (1 × 109 CFU/mL of each strain) was administered two twice a day for 4 weeks. Administration of L. fermentum increased acetate and succinate fecal contents and reduced hyperlipidemia and hyperglycemia in rats fed a HFD (p < 0.05). Administration of L. fermentum decreased low-grade inflammation and improved antioxidant capacity along the gut, liver, heart, and kidney tissues in female rats fed a HFD (p < 0.05). Administration of L. fermentum prevented dyslipidemia, inflammation, and oxidative stress in colon, liver, heart, and kidney in female rats fed a HFD.


Assuntos
Doenças Cardiovasculares , Limosilactobacillus fermentum , Probióticos , Ratos , Feminino , Animais , Antioxidantes/farmacologia , Ratos Wistar , Dieta Hiperlipídica/efeitos adversos , Probióticos/farmacologia , Inflamação/prevenção & controle , Anti-Inflamatórios
3.
J Dev Orig Health Dis ; 13(6): 719-726, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35437140

RESUMO

Oxidative stress along the gut-kidney axis is a risk factor for developing arterial hypertension in offspring from dams fed a high-fat diet. Considering the antioxidant capacity of probiotic strains, this study evaluated the effects of a daily multistrain formulation with Limosilactobacillus fermentum 139, 263, and 296 on blood pressure (BP), renal function, and oxidative stress and along the gut-kidney axis in male offspring from dams fed a high-fat high-cholesterol (HFHC) diet during pregnancy and lactation. Dams were fed a diet control or HFHC diet during pregnancy and lactation. At 100 days of age, part of the male offspring from dams fed a HFHC diet received Limosilactobacillus fermentum formulation for 4 weeks (HFHC + Lf) daily. After the 4-week intervention, BP (tail-cuff plethysmography) and urinary and biochemical variables were measured. In addition, malondialdehyde levels, enzymatic activities of superoxide dismutase, catalase, glutathione-S-transferase, and nonenzymatic antioxidant defense (thiols content) were measured in the colon and renal cortex. Male offspring from dams fed a HFHC had increased blood pressure, impaired renal function, and oxidative stress along the gut-kidney axis. Administration of Limosilactobacillus fermentum reduced systolic, diastolic, and mean blood pressure levels and alleviated renal function impairment and oxidative stress along the gut-kidney axis in male offspring from dams fed a HFHC diet. Administration of Limosilactobacillus fermentum formulation attenuated programmed hypertension in the HFHC group through oxidative stress modulation along the gut-kidney axis.


Assuntos
Hipercolesterolemia , Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Animais , Masculino , Humanos , Pressão Sanguínea , Dieta Hiperlipídica/efeitos adversos , Antioxidantes , Rim/metabolismo , Hipertensão/etiologia , Hipertensão/prevenção & controle , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
Foods ; 10(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34574313

RESUMO

High-fat diet (HFD) consumption has been linked to dyslipidemia, low-grade inflammation and oxidative stress. This study investigated the effects of a mixed formulation with Limosilactobacillusfermentum 139, L. fermentum 263 and L. fermentum 296 on cardiometabolic parameters, fecal short-chain fatty acid (SCFA) contents and biomarkers of inflammation and oxidative stress in colon and heart tissues of male rats fed an HFD. Male Wistar rats were grouped into control diet (CTL, n = 6), HFD (n = 6) and HFD with L. fermentum formulation (HFD-Lf, n = 6) groups. The L.fermentum formulation (1 × 109 CFU/mL of each strain) was administered twice a day for 4 weeks. After a 4-week follow-up, biochemical parameters, fecal SCFA, cytokines and oxidative stress variables were evaluated. HFD consumption caused hyperlipidemia, hyperglycemia, low-grade inflammation, reduced fecal acetate and propionate contents and increased biomarkers of oxidative stress in colon and heart tissues when compared to the CTL group. Rats receiving the L. fermentum formulation had reduced hyperlipidemia and hyperglycemia, but similar SCFA contents in comparison with the HFD group (p < 0.05). Rats receiving the L. fermentum formulation had increased antioxidant capacity throughout the colon and heart tissues when compared with the control group. Administration of a mixed L. fermentum formulation prevented hyperlipidemia, inflammation and oxidative stress in colon and heart tissues induced by HFD consumption.

5.
Life Sci ; 261: 118367, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882266

RESUMO

AIMS: Evaluate the effects of maternal high fat and high cholesterol (HFHC) diet consumption on blood pressure (BP), renal function and oxidative stress along the gut-kidney axis in male and female rat offspring. MATERIALS AND METHODS: Pregnant rats were fed with a control (CTL) or HFHC diet during pregnancy and lactation. At 90 days, BP was assessed by tail-cuff plethysmography, and urinary and biochemical variables were measured. Biomarkers for oxidative stress, enzymatic antioxidant defense (activity of superoxide dismutase-SOD, catalase, and glutathione-S-transferase-GST) and nonenzymatic antioxidant defense (thiols content) were evaluated in the colon and renal cortex. KEY FINDINGS: Male and female offspring from dams fed with a HFHC diet presented increased BP when compared to their respective CTL group. Male offspring from dams fed with HFHC diet showed reduced GST activity and thiols content in the colon, reduced SOD activity in the renal cortex and decreased urinary creatinine excretion when compared to the CTL group. Regarding female offspring, catalase activity and thiols content were reduced in the colon when compared to CTL group. Although lipid peroxidation had been increased in the renal cortex of HFHC female offspring, the CAT and SOD enzymatic antioxidant acitivities (CAT and SOD) were increased in the renal cortex of female offspring when compared with male offspring; and the renal function was not impaired by maternal HFHC diet consumption. SIGNIFICANCE: HFHC diet during pregnancy and lactation induces sex-specific oxidative stress along the gut-kidney axis in offspring, which might induce renal dysfunction and arterial hypertension in later life.


Assuntos
Artérias/patologia , Trato Gastrointestinal/patologia , Hipertensão/patologia , Rim/patologia , Exposição Materna , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Artérias/fisiopatologia , Biomarcadores/sangue , Pressão Sanguínea , Colesterol , Colo/patologia , Colo/fisiopatologia , Diástole , Dieta Hiperlipídica , Feminino , Trato Gastrointestinal/fisiopatologia , Frequência Cardíaca , Hipertensão/sangue , Hipertensão/fisiopatologia , Rim/fisiopatologia , Masculino , Gravidez , Ratos Wistar , Sístole
6.
Life Sci ; 232: 116579, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252001

RESUMO

AIMS: We sought to evaluate the effects of maternal protein restriction (LP) on oxidative balance and transcription factors for mitochondrial biogenesis in the hearts of young female rats of both the first (F1) and second (F2) generation. MAIN METHODS: We evaluated oxidative stress biomarkers (lipid peroxidation and protein oxidation), enzymatic antioxidant defense (activity of superoxide dismutase-SOD, catalase, and glutathione-S-transferase-GST), nonenzymatic antioxidant defense (reduced glutathione-GSH and sulfhydryl groups) and gene expression of AMPK, PGC-1α and TFAM. KEY FINDINGS: Interestingly, lipid peroxidation was decreased (49%, p < 0.001) in the LP-F1 group and 59% (p < 0.001) in LP-F2. In enzymatic defense, we observed increases in SOD activity in the LP-F1 group (79%, p = 0.036) and in CAT activity (approximately 40%, p = 0.041). GSH was increased in F2 in both groups (LP 546%, p < 0.0001 and in NP 491.7%, p < 0.0001). With respect to mitochondrial biogenesis gene transcription, we observed a decrease in AMPK (60%, p < 0. 0001) and an increase in PGC-1α (340%, p < 0.001) in LP compared to NP in the F1 generation. TFAM was decreased in LP-F2L compared to NP-F2L (42%, p = 0.0069) and increased in LP-F2 compared to LP-F1 (160%, p = 0.0037). SIGNIFICANCE: Our study contributes to knowledge of inheritance, showing that despite the potential mitochondrial 'inheritance' of cardiovascular damage caused by maternal malnutrition, that damage is not cross-generational and can be eliminated with proper nutrition in the F1 generation.


Assuntos
Miocárdio/metabolismo , Estresse Oxidativo/fisiologia , Desnutrição Proteico-Calórica/metabolismo , Animais , Antioxidantes/farmacologia , Feminino , Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Hereditariedade/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...