Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 54(16): 7735-41, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26222397

RESUMO

The tripodal terpyridine ligand, L, forms 1D helical supramolecular polymers/gels in H2O-CH3OH solution mediated through hydrogen bonding and π-π interactions. These gels further cross-link into 3D supramolecular metallogels with a range of metal ions (M) such as Fe(II), Ni(II), Cu(II), Zn(II), and Ru(III); the cross-linking resulting in the formation of colored or colorless gels. The fibrous morphology of these gels was confirmed using scanning electron microscopy (SEM); while the self-assembly processes between L and M were investigated by absorbance and emission spectroscopy from which their binding constants were determined by using a nonlinear regression analysis.


Assuntos
Metais Pesados/química , Piridinas/química , Géis , Ligantes
2.
Angew Chem Int Ed Engl ; 51(29): 7208-12, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22689455

RESUMO

Eu(III), the last piece in the puzzle: Europium-induced self-assembly of ligands having a C(3)-symmetrical benzene-1,3,5-tricarboxamide core results in the formation of luminescent gels. Supramolecular polymers are formed through hydrogen bonding between the ligands. The polymers are then brought together into the gel assembly through the coordination of terpyridine ends by Eu(III) ions (blue dashed arrow: distance between two ligands in the strand direction).

3.
J Org Chem ; 73(23): 9235-44, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18986206

RESUMO

The design, synthesis, and X-ray crystallographic analysis of three simple diaryl-urea based anion receptors possessing an amide moiety on one of the aryl groups, and an electron withdrawing CF(3) group on the other, is described. The three receptors differ only in the position of the amide functionality relative to the hydrogen bonding urea moiety (being para, meta, and ortho for 1, 2, and 3, respectively). This simple modification was shown to have a significant effect on the anion recognition ability, the strength of the recognition process, and the stoichiometry (host/guest) for these sensors. We demonstrate, by using both UV-vis absorption and (1)H NMR spectroscopy, that these factors are caused by the ability of the amide moiety to both modulate the anion binding selectivity and the sensitivity of the urea moiety. We also demonstrate that, in the case of 1 and 2, this anion recognition at the urea moiety leads to concomitant activation (through enhanced inductive effect) in the amide functionality toward anions, which leads to the formation of an overall 1:2 (sensor/anion) binding stoichiometry for these receptors. This "activation" we describe as being an example of a "positive allosteric activation" by the urea site, caused directly by the first anion binding interaction, which to the best of our knowledge, has not been previously demonstrated for anion recognition and sensing.

4.
Chem Commun (Camb) ; (32): 3389-91, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18019507

RESUMO

The delayed lanthanide luminescence of the terbium [Tb(III)] diaryl-urea complex 1xTb is significantly enhanced upon sensing of dihydrogenphosphate (H2PO4(-)) in CH3CN, which occurs through multiple anion binding through hydrogen bonding interactions and potential metal ion coordination to Tb(III).

5.
Chem Commun (Camb) ; (2): 129-31, 2007 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-17180222

RESUMO

The synthesis and the photophysical evaluation of a novel pH dependent lanthanide luminescent self-assembly in water between a cyclen based europium complex and a beta-diketonate is described and its use as a luminescent sensor in displacement assays for anions such as acetate, bicarbonate and lactate, where the Eu(III) emission was quenched upon anion recognition.

6.
J Fluoresc ; 15(3): 287-99, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15986154

RESUMO

This mini review highlights the synthesis and photophysical evaluation of anion sensors, for nonaqueous solutions, that have been developed in our laboratories over the last few years. We have focused our research mainly on developing fluorescent photoinduced electron transfer (PET) sensors based on the fluorophore-spacer-anion receptor principle using several anthracene (emitting in the blue) and 1,8-naphthalimide (emitting in the green) fluorophores, with the aim of targeting biologically and industrially relevant anions such as acetates, phosphate and amino acids, as well as halides such as fluoride. The receptors and the fluorophore are separated by a short methyl or ethyl spacer, where the charge neutral anion receptors are either aliphatic or aromatic urea (or thiourea) moieties. For these, the anion recognition is through hydrogen bonding, yielding anion:receptor complexes. Such bonding gives rise to enhanced reduction potential in the receptor moieties which causes enhancement in the rate of PET quenching of the fluorophore excited state from the anion:receptor moiety. This design can be further elaborated on by incorporating either two fluorophores, or urea/thiourea receptors into the sensor structures, using anthracene as a fluorophore. For the latter design, the sensors were designed to achieve sensing of bis-anions, such as di-carboxylates or pyrophosphate, where the anion bridged the anthracene moiety. In the case of the naphthalimide based mono-receptor based PET sensors, it was discovered that in DMSO the sensors were also susceptible to deprotonation by anions such as F(-) at high concentrations. This led to substantial changes in the absorption spectra of these sensors, where the solution changed colour from yellow/green to deep blue, which was clearly visible to the naked eye. Hence, some of the examples presented can act as dual fluorescent-colorimetric sensors for anions. Further investigations into this phenomenon led to the development of simple colorimetric sensors for fluorides, which upon exposure to air, were shown to fix carbon dioxide as bicarbonate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...