Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Econ Entomol ; 115(4): 967-971, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35187578

RESUMO

Drosophila suzukii (Matsumura 1931) represents one of the main pests of small fruits. The use of biological agents is very promising for insect control. In the present study, the nematode Steinernema rarum PAM 25 was evaluated for the control of D. suzukii pupae, this species has not been evaluated previously. First, we evaluated the pathogenicity of S. rarum PAM 25 at the concentration of 1,000 infective juveniles (IJs) inoculated into D. suzukii pupae. In the second bioassay, we evaluated the influence of 1,500; 2,000; 2,500; 3,000; 4,000 IJs/ml nematode concentration and temperature on D. suzukii mortality. In the third bioassay, we evaluated the influence of the isolate S. rarum PAM 25 on D. suzukii adult lifespan following pupal infection, using the concentrations with the highest mortality rate of pupae at each temperature as determined in the second experiment. The S. rarum PAM 25 isolate is pathogenic to D. suzukii. The most effective temperature for S. rarum PAM 25 activity was 14°C at a concentration of 4,000 IJs/ml. Adults infected with S. rarum PAM 25 showed a significant reduction in longevity. The results confirmed the potential of S. rarum PAM 25 for the control of D. suzukii.


Assuntos
Rabditídios , Animais , Drosophila , Controle de Insetos/métodos , Longevidade , Pupa
2.
Bull Entomol Res ; 109(6): 762-770, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31213206

RESUMO

The establishment of an invasive species depends on reproductive success and dispersion capability in the new environment. One of the striking examples of invasion in urban environments is the mosquito Aedes aegypti Linnaeus, 1762 (Culicidae). The success of this species is primarily attributed to its ability to colonize urban environments, and some of the important adaptive strategies associated with this ability is the preference for humans as a blood source and intense occupation of residential (indoor) environments. This study evaluated the effects of location (indoor vs. outdoor) and water nutrient level (% organic matter) on the oviposition preference of A. aegypti in an urban environment. We used oviposition choice experiments to evaluate mosquito oviposition in containers holding 1:1 vs 1:0 ratios of water: organic matter placed indoors and outdoors. Eggs were sampled once per week for nine weeks. Our results revealed a strong oviposition preference for outdoor containers, with a significant preference for containers with higher concentrations of organic matter during the fifth to ninth weeks. However, mosquitoes occupying indoor environments did not prefer to lay eggs in containers with lower levels of organic matter. A better understanding of the preferences of A. aegypti regarding the nutrient level and location of oviposition containers can increase our understanding of the behavioral factors allowing mosquitoes to utilize anthropogenic environments.


Assuntos
Aedes/fisiologia , Oviposição , Água/química , Animais , Comportamento Animal , Brasil , Comportamento de Escolha , Cidades , Ecossistema , Feminino , Habitação , Espécies Introduzidas , Poluentes da Água
3.
Rev. bras. entomol ; 62(1): 40-45, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1045480

RESUMO

ABSTRACT Organisms with complex life cycles typically do not exhibit parental care. Hence, the ability of adult females to choose quality oviposition sites is critical for offspring success. Gravid females of many insect taxa have the capability to detect environmental conditions in water-holding containers (e.g., resource level, presence of competitors or predators) and to choose the sites that are most suitable for offspring growth and development. Mosquitoes may also detect physical container characteristics related to water permanence such as surface area, volume, or container size, and some species such as those in the genus Culex have been shown to prefer larger containers. However, predators may also preferentially colonize larger containers; thus, ovipositing females may face decisions based on cues of site quality that balance the costs and benefits for offspring. We used a field experiment to evaluate the oviposition preferences of two Culex species in response to experimental container size and predator abundances within the containers. We found that both species avoided ovipositing in the largest containers, which have high abundances of Chaoborus sp. and dragonfly larvae (predators). However, the container size most commonly chosen for oviposition (15-L buckets) also had high mean abundance per liter of dragonfly larvae. These results suggest either prey naiveté or reduced vulnerability of these species to dragonflies compared to Chaoborus sp. Other potential mechanisms for the observed patterns are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...