Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7431, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973928

RESUMO

Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation.


Assuntos
Toxinas Bacterianas , NF-kappa B , NF-kappa B/metabolismo , Toxinas Bacterianas/metabolismo , Endocitose , Endossomos/metabolismo , Peptídeos/metabolismo , Transporte Proteico
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982212

RESUMO

Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative fish pathogen with worldwide distribution and broad host specificity that causes heavy economic losses in aquaculture. Although Phdp was first identified more than 50 years ago, its pathogenicity mechanisms are not completely understood. In this work, we report that Phdp secretes large amounts of outer membrane vesicles (OMVs) when cultured in vitro and during in vivo infection. These OMVs were morphologically characterized and the most abundant vesicle-associated proteins were identified. We also demonstrate that Phdp OMVs protect Phdp cells from the bactericidal activity of fish antimicrobial peptides, suggesting that secretion of OMVs is part of the strategy used by Phdp to evade host defense mechanisms. Importantly, the vaccination of sea bass (Dicentrarchus labrax) with adjuvant-free crude OMVs induced the production of anti-Phdp antibodies and resulted in partial protection against Phdp infection. These findings reveal new aspects of Phdp biology and may provide a basis for developing new vaccines against this pathogen.


Assuntos
Bass , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Vacinas , Animais , Photobacterium , Virulência , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
3.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536321

RESUMO

Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( PhotobacteriumNlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ-d-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG.IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.


Assuntos
Bactérias/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Photobacterium/enzimologia , Photobacterium/metabolismo , Animais , Parede Celular/química , Parede Celular/metabolismo , Endopeptidases/análise , Endopeptidases/química , Endopeptidases/genética , Peixes/microbiologia , Photobacterium/genética
4.
Cell Microbiol ; 22(1): e13109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454143

RESUMO

Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.


Assuntos
Proteínas Reguladoras de Apoptose/química , Toxinas Bacterianas/metabolismo , Citosol/metabolismo , Dissulfetos , Oxirredução , Photobacterium/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Endocitose , Peixes/microbiologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Photobacterium/patogenicidade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Fatores de Virulência/metabolismo
5.
Sci Rep ; 9(1): 9019, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227743

RESUMO

AIP56 (apoptosis inducing protein of 56 kDa) is a key virulence factor secreted by virulent strains of Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes septicemic infections in several warm water marine fish species. AIP56 is systemically disseminated during infection and induces massive apoptosis of host macrophages and neutrophils, playing a decisive role in the disease outcome. AIP56 is a single-chain AB-type toxin, being composed by a metalloprotease A domain located at the N-terminal region connected to a C-terminal B domain, required for internalization of the toxin into susceptible cells. After binding to a still unidentified surface receptor, AIP56 is internalised through clathrin-mediated endocytosis, reaches early endosomes and translocates into the cytosol through a mechanism requiring endosomal acidification and involving low pH-induced unfolding of the toxin. At the cytosol, the catalytic domain of AIP56 cleaves NF-κB p65, leading to the apoptotic death of the intoxicated cells. It has been reported that host cytosolic factors, including host cell chaperones such as heat shock protein 90 (Hsp90) and peptidyl-prolyl cis/trans isomerases (PPIases), namely cyclophilin A/D (Cyp) and FK506-binding proteins (FKBP) are involved in the uptake of several bacterial AB toxins with ADP-ribosylating activity, but are dispensable for the uptake of other AB toxins with different enzymatic activities, such as Bacillus anthracis lethal toxin (a metalloprotease) or the large glycosylating toxins A and B of Clostridium difficile. Based on these findings, it has been proposed that the requirement for Hsp90/PPIases is a common and specific characteristic of ADP-ribosylating toxins. In the present work, we demonstrate that Hsp90 and the PPIases cyclophilin A/D are required for efficient intoxication by the metalloprotease toxin AIP56. We further show that those host cell factors interact with AIP56 in vitro and that the interactions increase when AIP56 is unfolded. The interaction with Hsp90 was also demonstrated in intact cells, at 30 min post-treatment with AIP56, suggesting that it occurs during or shortly after translocation of the toxin from endosomes into the cytosol. Based on these findings, we propose that the participation of Hsp90 and Cyp in bacterial toxin entry may be more disseminated than initially expected, and may include toxins with different catalytic activities.


Assuntos
Toxinas Bacterianas/metabolismo , Ciclofilina A/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Metaloproteases/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Photobacterium/metabolismo , Animais , Células Cultivadas , Endocitose , Endossomos/metabolismo , Endossomos/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Photobacterium/patogenicidade , Virulência
6.
Front Microbiol ; 10: 897, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105680

RESUMO

The RstB histidine kinase of the two component system RstAB positively regulates the expression of damselysin (Dly), phobalysin P (PhlyP) and phobalysin C (PhlyC) cytotoxins in the fish and human pathogen Photobacterium damselae subsp. damselae, a marine bacterium of the family Vibrionaceae. However, the function of the predicted cognate response regulator RstA has not been studied so far, and the role of the RstAB system in other cell functions and phenotypes remain uninvestigated. Here, we analyzed the effect of rstA and rstB mutations in cell fitness and in diverse virulence-related features. Both rstA and rstB mutants were severely impaired in virulence for sea bream and sea bass fish. Mutants in rstA and rstB genes were impaired in hemolysis and in Dly-dependent phospholipase activity but had intact PlpV-dependent phospholipase and ColP-dependent gelatinase activities. rstA and rstB mutants grown at 0.5% NaCl exhibited impaired swimming motility, enlarged cell size and impaired ability to separate after cell division, whereas at 1% NaCl the mutants exhibited normal phenotypes. Mutation of any of the two genes also impacted tolerance to benzylpenicillin. Notably, rstA and rstB mutants showed impaired secretion of a number of type II secretion system (T2SS)-dependent proteins, which included the three major cytotoxins Dly, PhlyP and PhlyC, as well as a putative delta-endotoxin and three additional uncharacterized proteins which might constitute novel virulence factors of this pathogenic bacterium. The analysis of the T2SS-dependent secretome of P. damselae subsp. damselae also led to the identification of RstAB-independent potential virulence factors as lipoproteins, sialidases and proteases. The RstAB regulon included plasmid, chromosome I and chromosome II-encoded genes that showed a differential distribution among isolates of this subspecies. This study establishes RstAB as a major regulator of virulence and diverse cellular functions in P. damselae subsp. damselae.

7.
Microbiol Resour Announc ; 8(21)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123016

RESUMO

Here, we report the draft genome sequences of two strains of the fish pathogen Photobacterium damselae subsp. piscicida, isolated from Salmo salar (SNW-8.1) and Seriola quinqueradiata (PP3). The identification of a type III secretion system in the two genomes furthers our understanding of the pathobiology of this subspecies.

8.
Nucleic Acids Res ; 46(18): 9338-9352, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30011022

RESUMO

The foodborne pathogen Listeria monocytogenes (Lm) causes invasive infection in susceptible animals and humans. To survive and proliferate within hosts, this facultative intracellular pathogen tightly coordinates the expression of a complex regulatory network that controls the expression of virulence factors. Here, we identified and characterized MouR, a novel virulence regulator of Lm. Through RNA-seq transcriptomic analysis, we determined the MouR regulon and demonstrated how MouR positively controls the expression of the Agr quorum sensing system (agrBDCA) of Lm. The MouR three-dimensional structure revealed a dimeric DNA-binding transcription factor belonging to the VanR class of the GntR superfamily of regulatory proteins. We also showed that by directly binding to the agr promoter region, MouR ultimately modulates chitinase activity and biofilm formation. Importantly, we demonstrated by in vitro cell invasion assays and in vivo mice infections the role of MouR in Lm virulence.


Assuntos
Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Fatores de Transcrição/fisiologia , Fatores de Virulência/fisiologia , Proteínas de Bactérias/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutagênese Sítio-Dirigida , Organismos Geneticamente Modificados , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Regulon , Virulência/genética
9.
Toxins (Basel) ; 9(11)2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135911

RESUMO

AIP56 (apoptosis-inducing protein of 56 kDa) is a key virulence factor of Photobacterium damselae subsp. piscicida (Phdp), the causative agent of a septicaemia affecting warm water marine fish species. Phdp-associated pathology is triggered by AIP56, a short trip AB toxin with a metalloprotease A domain that cleaves the p65 subunit of NF-κB, an evolutionarily conserved transcription factor that regulates the expression of inflammatory and anti-apoptotic genes and plays a central role in host responses to infection. During infection by Phdp, AIP56 is systemically disseminated and induces apoptosis of macrophages and neutrophils, compromising the host phagocytic defence and contributing to the genesis of pathology. Although it is well established that the secretion of AIP56 is crucial for Phdp pathogenicity, the protein secretion systems operating in Phdp and the mechanism responsible for the extracellular release of the toxin remain unknown. Here, we report that Phdp encodes a type II secretion system (T2SS) and show that mutation of the EpsL component of this system impairs AIP56 secretion. This work demonstrates that Phdp has a functional T2SS that mediates secretion of its key virulence factor AIP56.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/metabolismo , Photobacterium/metabolismo , Toxinas Bacterianas/toxicidade , Genes Bacterianos , Microscopia Eletrônica de Transmissão , Photobacterium/genética
10.
Infect Immun ; 82(12): 5270-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287919

RESUMO

AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Toxinas Bacterianas/metabolismo , NF-kappa B/metabolismo , Photobacterium/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Citosol/química , Endocitose , Endossomos/química , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Proteólise
11.
Fish Shellfish Immunol ; 35(4): 1163-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23880452

RESUMO

PDI (PDIA1) and ERp57 (PDIA3), members of the PDI family and of the thioredoxin (Trx) superfamily, are multifunctional proteins with wide physiological roles and have been implicated in several pathologies. Importantly, they are both involved in the MHC class I antigen presentation pathway. This paper reports the isolation and characterization of full cDNA and genomic clones from sea bass (Dicentrarchus labrax, L.) PDI (Dila-PDI) and ERp57 (Dila-ERp57). The genes are ~12.4 and ~7.1 kb long, originating 2155 and 2173 bp transcripts and encoding 497 and 484 amino acids mature proteins, for Dila-PDI and -ERp57, respectively. The PDI gene consists of eleven exons and ERp57 of thirteen. As described in other species, both molecules are composed of four Trx-like domains (abb'a') followed by a C-terminal tail, retaining two CGHC active sites and an ER-signalling sequence, suggestive of a conserved function. Additionally, three-dimensional homology models further support Dila-PDI and Dila-ERp57 as orthologs of mammalian PDI and ERp57, respectively. Finally, high similarity is observed to their vertebrate counterparts (>69% identity), especially among the few ones from closely related teleosts (>79% identity). Hence, these results provide relevant primary data and will enable further studies to clarify the roles of PDI and ERp57 in European sea bass immunity.


Assuntos
Bass/genética , Proteínas de Peixes/genética , Isomerases de Dissulfetos de Proteínas/genética , Tiorredoxinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bass/metabolismo , Southern Blotting/veterinária , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Dosagem de Genes , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterinária , Tiorredoxinas/química , Tiorredoxinas/metabolismo
12.
PLoS Pathog ; 9(2): e1003128, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468618

RESUMO

AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys(39)-Glu(40) peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Toxinas Bacterianas/metabolismo , Metaloproteases/metabolismo , Photobacterium/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Virulência/metabolismo , Animais , Bass , Doenças dos Peixes/metabolismo , Interações Hospedeiro-Patógeno , Leucócitos/metabolismo , Leucócitos/patologia , Proteínas Recombinantes
13.
Fish Shellfish Immunol ; 34(6): 1611-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23523749

RESUMO

Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation.


Assuntos
Bass/genética , Calreticulina/genética , Proteínas de Peixes/genética , Sequência de Aminoácidos , Animais , Bass/metabolismo , Southern Blotting , Calreticulina/química , Calreticulina/metabolismo , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
Dev Comp Immunol ; 39(3): 234-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23116964

RESUMO

In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) ß2-microglobulin (Dila-ß2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-ß2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-ß2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of ß2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other ß2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species.


Assuntos
Bass/imunologia , Rim Cefálico/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Leucócitos/metabolismo , Microglobulina beta-2/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Clonagem Molecular , Regulação da Expressão Gênica/imunologia , Rim Cefálico/citologia , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/genética , Leucócitos/imunologia , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Poli I-C/imunologia , Polimorfismo Genético , Conformação Proteica , Análise de Sequência de DNA , Microglobulina beta-2/classificação , Microglobulina beta-2/genética
15.
PLoS One ; 7(11): e50450, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226286

RESUMO

Interleukine-1ß (IL-1ß) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1ß is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1ß sequences is absent in IL-1ß sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1ß are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1ß.


Assuntos
Ácido Aspártico/metabolismo , Bass/genética , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Motivos de Aminoácidos , Animais , Ácido Aspártico/química , Ácido Aspártico/genética , Bass/imunologia , Bass/metabolismo , Caspase 1/química , Caspase 1/genética , Sistema Livre de Células/metabolismo , Galinhas , Clonagem Molecular , Escherichia coli/genética , Humanos , Interleucina-1beta/química , Interleucina-1beta/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Proteólise , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulócitos/metabolismo , Homologia de Sequência de Aminoácidos
16.
Fish Shellfish Immunol ; 32(1): 110-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22119577

RESUMO

Mammalian tapasin (TPN) is a key member of the major histocompatibility complex (MHC) class I antigen presentation pathway, being part of the multi-protein complex called the peptide loading complex (PLC). Several studies describe its important roles in stabilizing empty MHC class I complexes, facilitating peptide loading and editing the repertoire of bound peptides, with impact on CD8(+) T cell immune responses. In this work, the gene and cDNA of the sea bass (Dicentrarchus labrax) glycoprotein TPN have been isolated and characterized. The coding sequence has a 1329 bp ORF encoding a 442-residue precursor protein with a predicted 24-amino acid leader peptide, generating a 418-amino acid mature form that retains a conserved N-glycosylation site, three conserved mammalian tapasin motifs, two Ig superfamily domains, a transmembrane domain and an ER-retention di-lysine motif at the C-terminus, suggestive of a function similar to mammalian tapasins. Similar to the human counterpart, the sea bass TPN gene comprises 8 exons, some of which correspond to separate functional domains of the protein. A three-dimensional homology model of sea bass tapasin was calculated and is consistent with the structural features described for the human molecule. Together, these results support the concept that the basic structure of TPN has been maintained through evolution. Moreover, the present data provides information that will allow further studies on cell-mediated immunity and class I antigen presentation pathway in particular, in this important fish species.


Assuntos
Bass/genética , Bass/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Bass/classificação , Clonagem Molecular , Ordem dos Genes , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
Dev Comp Immunol ; 35(11): 1173-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21540052

RESUMO

The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Apresentação de Antígeno , Bass/imunologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/genética , Sequência de Bases , Clonagem Molecular , Complexo Principal de Histocompatibilidade , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Fish Shellfish Immunol ; 30(1): 173-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20969963

RESUMO

It has been previously shown that the exotoxin of the important fish pathogen Photobacterium damselae ssp. piscicida is a key pathogenicity factor and is responsible for the extensive systemic apoptosis of macrophages and neutrophils seen in acute fish photobacteriosis. The focus of the present study was to further characterize the AIP56-induced apoptosis of sea bass professional phagocytes by assessing the involvement of caspases, mitochondria and oxidative stress. The resulting data indicate that the apoptotic response in peritoneal macrophages and neutrophils treated ex vivo with AIP56 involves activation of caspase-8, -9 and -3, and mitochondria as shown by loss of mitochondrial membrane potential, release of cytochrome c and over-production of ROS. These results together with previous data from this laboratory suggest that both the extrinsic and intrinsic apoptotic pathways are involved in the AIP56-induced phagocyte apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Exotoxinas/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Photobacterium/metabolismo , Animais , Inibidores de Caspase , Caspases/metabolismo , Células Cultivadas , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neutrófilos/citologia , Neutrófilos/fisiologia
19.
Fish Shellfish Immunol ; 29(1): 58-65, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20202478

RESUMO

Caspase-8 is an initiator caspase that plays a crucial role in some cases of apoptosis by extrinsic and intrinsic pathways. Caspase-8 structure and function have been extensively studied in mammals, but in fish the characterization of that initiator caspase is still scarce. In this work, the sea bass counterpart of mammalian caspase-8 was sequenced and characterized, and its involvement in the apoptogenic activity of a toxin from a fish pathogen was assessed. A 2472 bp cDNA of sea bass caspase-8 was obtained, consisting of 1455 bp open reading frame coding for 484 amino acids and with a predicted molecular weight of 55.2 kDa. The sea bass caspase-8 gene has 6639 bp and is organized in 11 introns and 12 exons. Several distinctive features of sea bass caspase-8 were identified, which include two death effector domains, the caspase family domains p20 and p10, the caspase-8 active-site pentapeptide and potential aspartic acid cleavage sites. The sea bass caspase-8 sequence revealed a significant degree of similarity to corresponding sequences from several vertebrate taxonomic groups. A low expression of sea bass caspase-8 was detected in various tissues of non-stimulated sea bass. Furthermore, it is shown that stimulation of sea bass with mid-exponential phase culture supernatants from Photobacterium damselae ssp. piscicida (Phdp), known to induce selective apoptosis of macrophages and neutrophils, resulted in an increased expression of caspase-8 in the spleen, one of the main affected organs by Phdp infection.


Assuntos
Apoptose/imunologia , Bass/imunologia , Caspase 8/imunologia , Photobacterium/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bass/genética , Bass/microbiologia , Southern Blotting/veterinária , Caspase 8/genética , Clonagem Molecular , Dados de Sequência Molecular , Filogenia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA
20.
Toxins (Basel) ; 2(4): 905-18, 2010 04.
Artigo em Inglês | MEDLINE | ID: mdl-22069616

RESUMO

Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative pathogen agent of an important fish septicemia. The key virulence factor of Phdp is the plasmid-encoded exotoxin AIP56, which is secreted by exponentially growing pathogenic strains. AIP56 has 520 amino acids including an N-terminal cleavable signal peptide of 23 amino acid residues, two cysteine residues and a zinc-binding region signature HEXXH that is typical of most zinc metallopeptidases. AIP56 induces in vitro and in vivo selective apoptosis of fish macrophages and neutrophils through a caspase-3 dependent mechanism that also involves caspase-8 and -9. In vivo, the AIP56-induced phagocyte apoptosis progresses to secondary necrosis with release of cytotoxic phagocyte molecules including neutrophil elastase. Fish injected with recombinant AIP56 die with a pathology similar to that seen in the natural infection.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Photobacterium/patogenicidade , Animais , Humanos , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Fatores de Virulência/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...