Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 50(10): 1685-93, 1995 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-7503772

RESUMO

Preliminary characterization of Toxoplasma gondii phosphoribosyltransferase activity towards purine nucleobases indicates that there are at least two enzymes present in these parasites. One enzyme uses hypoxanthine, guanine, and xanthine as substrates, while a second enzyme uses only adenine. Furthermore, competition experiments using the four possible substrates suggest that there may be a third enzyme that uses xanthine. Therefore, sixty-eight purine analogues and thirteen related derivatives were evaluated as ligands of T. gondii phosphoribosyltransferase, using xanthine or guanine as substrates, by examining their ability to inhibit these reactions in vitro. Inhibition was quantified by determining apparent Ki values for compounds that inhibited these activities by greater than 10% at a concentration of 0.9 mM. On the basis of these data, a structure-activity relationship for the binding of ligands to these enzymes was formulated using hypoxanthine (6-oxopurine) as a reference compound. It was concluded that the following structural features of purine analogues are required or strongly preferred for binding to both enzymes: (1) a pyrrole-type nitrogen (lactam form) at the 1-position; (2) a methine (= CH-), a pyridine type nitrogen (= N-), or an exocyclic amino or oxo group at the 2-position; (3) no exocyclic substituents at the 3-position; (4) an exocyclic oxo or thio group in the one or thione tautomeric form at the 6-position; (5) a pyridine-type nitrogen (= N-) or a methine group at the 7-position; (6) a methine group at the 8-position; (7) a pyrrole-type nitrogen or a carbon at the 9-position; and (8) no exocyclic substituents at the 9-position. These findings provide the basis for the rational design of additional ligands of hypoxanthine, guanine, and xanthine phosphoribosyltransferase activities in T. gondii.


Assuntos
Compostos Heterocíclicos/metabolismo , Hipoxantina Fosforribosiltransferase/metabolismo , Nitrilas/metabolismo , Pentosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Animais , Guanina/metabolismo , Compostos Heterocíclicos/farmacologia , Cinética , Ligantes , Nitrilas/farmacologia , Pentosiltransferases/antagonistas & inibidores , Nucleosídeos de Purina/metabolismo , Nucleosídeos de Purina/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato , Xantina , Xantinas/metabolismo
2.
Cancer Res ; 53(16): 3687-93, 1993 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-8339277

RESUMO

Enzyme inhibition studies on extracts from human liver, mouse liver, and human placenta indicate that there are considerable differences between human and murine hepatic uridine phosphorylases (UrdPase, EC 2.4.2.3) and thymidine phosphorylases (dThdPase, EC 2.4.2.4) with regard to their specificities and roles in the phosphorolysis of natural and 5-fluoropyrimidine nucleosides. To confirm further these differences between human and murine pyrimidine nucleoside phosphorylases, UrdPase and dThdPase were isolated from human liver, mouse liver, and human placenta using diethylaminoethyl-cellulose ion exchange chromatography. The pattern of elution from the column suggests that the hydrophobicity or charges on the human enzymes at pH 8 are different from those on their murine counterparts. The amount of each enzyme present differed between tissues and species. The apparent Km, Vmax, and efficiency of catalysis (Vmax/Km) values were determined for each enzyme using uridine, thymidine, deoxyuridine, 5-fluorouridine (FUrd), 5-fluoro-2'-deoxyuridine (FdUrd), and 5'-deoxy-5-fluorouridine (5'-dFUrd) as substrates. Kinetic parameters and inhibition studies were used to ascertain the binding affinity, substrate specificity, and contributions of UrdPase and dThdPase to the phosphorolysis of the various nucleosides in the 3 tissues. The roles of UrdPase and dThdPase in human liver were quite distinct from those of their counterparts from human placenta and mouse liver. In human liver, UrdPase appears to be highly specific to uridine. Human hepatic UrdPase contributes only 15% to the cleavage of FUrd and does not contribute to the cleavage of the deoxyribosides (thymidine, deoxyuridine, FdUrd, and 5'-dFUrd). In mouse liver, UrdPase has a broader specificity as it cleaves over 85% of FUrd, 15% of FdUrd, and 25% of 5'-dFUrd. On the other hand, human hepatic dThdPase has a broader specificity than murine hepatic dThdPase. Human hepatic dThdPase cleaves all nucleosides tested including the ribosides, uridine, and FUrd. Approximately 15% of uridine and 85% of FUrd phosphorolysis in human liver is carried out by dThdPase. This contrasts with the murine hepatic dThdPase, which is more specific to deoxyribosides, as it does not contribute to the phosphorolysis of uridine, and contributes only 15% toward the cleavage of FUrd. dThdPase is the principal enzyme responsible for the phosphorolysis of 5'-dFUrd in both human and murine livers. The specificities of UrdPase and dThdPase from human placenta resembled the enzymes from the murine liver more than those from human liver. Thus, it appears that the specificities of human hepatic pyrimidine nucleoside phosphorylases are distinct from those from extrahepatic tissues.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Floxuridina/metabolismo , Fluoruracila/metabolismo , Fígado/enzimologia , Timidina Fosforilase/metabolismo , Uridina Fosforilase/metabolismo , Uridina/análogos & derivados , Animais , Humanos , Fígado/metabolismo , Camundongos , Placenta/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Timidina Fosforilase/antagonistas & inibidores , Uridina/metabolismo , Uridina Fosforilase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...