Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viral Immunol ; 30(8): 576-581, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783457

RESUMO

Detection of respiratory syncytial virus (RSV) in blood, including mononuclear leukocytes and organs other than the lung, suggests that RSV disseminates outside the respiratory tract. In this study, the role of platelets in host defense against RSV was explored using an in vitro model. Platelets, also produced in the lungs, are increasingly recognized as an important part of host immune responses and may therefore play a role in modulating lung infections and clearing RSV viremia. In human peripheral blood mononuclear cells (PBMCs), platelets significantly reduced RSV infection of monocytes, monocyte activation, and interferon (IFN)α/γ production. Direct contact of platelets with PBMCs modulated the immune response when stimulated with Poly I:C (TLR3) and R848 (TLR7/8), Toll-like receptors (TLRs) involved in the recognition of RSV, and led to an enhanced IFNα/γ production. This suggested that reduction in RSV infection of monocytes in the presence of platelets could be IFN dependent; blocking IFNα receptor 2 (IFNAR2) on PBMCs indeed increased RSV infection. In addition, IFNs were not detected when PBMCs were stimulated with inactivated RSV, indicating that infection of monocytes was important for the induction of IFN responses and that the platelet-mediated reduced RSV infection was responsible for the decreased IFN levels. Furthermore, platelets could internalize RSV reducing the amount of viral particles that could infect monocytes. Our findings suggest that platelets may play a role in the clearance of RSV viremia by internalizing viral particles and by enhancing type I IFN production from PBMCs, which subsequently exert antiviral effect on host cells.


Assuntos
Plaquetas/imunologia , Imunidade Inata , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Células HeLa , Humanos , Interferon-alfa/análise , Interferon gama/análise , Leucócitos Mononucleares/virologia , Pulmão/virologia , Monócitos/virologia , Estatísticas não Paramétricas
2.
Virol J ; 13: 52, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27004689

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) can cause recurrent and severe respiratory tract infections. Cytoskeletal proteins are often involved during viral infections, either for cell entry or the initiation of the immune response. The importance of actin and clathrin dynamics for cell entry and the initiation of the cellular immune response against RSV in human immune cells is not known yet. The aim of this study was to investigate the role of actin and clathrin on cell entry of RSV and the subsequent effect on T cell activation and interferon gamma release in human immune cells. METHODS: Peripheral blood mononuclear cells and purified monocytes were isolated from healthy adults and stimulated in vitro with RSV. Actin and clathrin dynamics were inhibited with respectively cytochalasin D and chlorpromazine. T cell receptor signaling was inhibited with cyclosporin A. Flow cytometry was used to determine the role of actin and clathrin on cell entry and T cell activation by RSV. Enzyme-linked immunosorbent assays were used to investigate the contribution of actin and clathrin on the release of interferon gamma. RESULTS: Cell entry, virus gene transcription and interferon gamma release are actin-dependent. Post-endocytic processes like the increased expression of major histocompatibility complex II on monocytes , T cell activation and the release of interferon gamma are clathrin-dependent. Finally, T cell receptor signaling affects T cell activation, whereas soluble interleukin 18 is dispensable. CONCLUSION: Analysis of cell entry and interferon gamma release after infection with RSV reveals the importance of actin- and clathrin-dependent signaling in human immune cells. Insights into the cellular biology of the human immune response against respiratory syncytial virus will provide a better understanding of disease pathogenesis and may prove useful in the development of preventive strategies.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Interações Hospedeiro-Patógeno , Interferon gama/metabolismo , Vírus Sinciciais Respiratórios/fisiologia , Internalização do Vírus , Adulto , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...