Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
J Colloid Interface Sci ; 675: 515-525, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986325

RESUMO

The scarcity of freshwater resources and increasing demand for drinking water have driven the development of durable and sustainable desalination technologies. Although MXene composites have shown promise due to their excellent photothermal conversion and high thermal conductivity, their high hydrophilicity often leads to salt precipitation and low durability. In this study, we present a novel Cellulose (CF)/MXene paper with a Janus hydrophobic/hydrophilic configuration for long-term and efficient solar-driven desalination. The paper features a dual-layer structure, with the upper hydrophobic layer composed of CF/MXene paper exhibiting convexness to serve as a photothermal layer with exceptional salt rejection properties. Simultaneously, the bottom porous layer made of CF acts as an efficient thermal insulation. This unique design effectively minimizes heat loss and facilitates efficient water transportation. The Janus CF/MXene paper demonstrates a high evaporation rate of 1.11 kg m-2h-1 and solar thermal conversion efficiency of 82.52 % under 1 sun irradiation. Importantly, even after 2500 h of operation in a simulated seawater environment, the paper maintains a stable evaporation rate without significant salt deposition and biodegradation due to an antibacterial rate exceeding 90 %. These findings highlight the potential of the Janus CF/MXene paper for scalable manufacturing and practical applications in solar-driven desalination.

2.
Plants (Basel) ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931014

RESUMO

Lettuce is a widely consumed leafy vegetable; it became popular due to its enhanced nutritional content. Recently, lettuce is also regarded as one of the model plants for vegetable production in plant factories. Light and nutrients are essential environmental factors that affect lettuce growth and morphology. To evaluate the impact of light spectra on lettuce, butter lettuce was grown under the light wavelengths of 460, 525, and 660 nm, along with white light as the control. Plant morphology, physiology, nutritional content, and transcriptomic analyses were performed to study the light response mechanisms. The results showed that the leaf fresh weight and length/width were higher when grown at 460 nm and lower when grown at 525 nm compared to the control treatment. When exposed to 460 nm light, the sugar, crude fiber, mineral, and vitamin concentrations were favorably altered; however, these levels decreased when exposed to light with a wavelength of 525 nm. The transcriptomic analysis showed that co-factor and vitamin metabolism- and secondary metabolism-related genes were specifically induced by 460 nm light exposure. Furthermore, the pathway enrichment analysis found that flavonoid biosynthesis- and vitamin B6 metabolism-related genes were significantly upregulated in response to 460 nm light exposure. Additional experiments demonstrated that the vitamin B6 and B2 content was significantly higher in leaves exposed to 460 nm light than those grown under the other conditions. Our findings suggested that the addition of 460 nm light could improve lettuce's biomass and nutritional value and help us to further understand how the light spectrum can be tuned as needed for lettuce production.

3.
Mar Life Sci Technol ; 6(2): 331-348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827128

RESUMO

Phenolic compounds, as well as other aromatic compounds, have been reported to be abundant in hadal trenches. Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds, direct microbiological, genetic and biochemical evidence under in situ pressures remain absent. Here, a microbial consortium and a pure culture of Pseudomonas, newly isolated from Mariana Trench sediments, efficiently degraded phenol under pressures up to 70 and 60 MPa, respectively, with concomitant increase in biomass. By analyzing a high-pressure (70 MPa) culture metatranscriptome, not only was the entire range of metabolic processes under high pressure generated, but also genes encoding complete phenol degradation via ortho- and meta-cleavage pathways were revealed. The isolate of Pseudomonas also contained genes encoding the complete degradation pathway. Six transcribed genes (dmpKLMNOPsed) were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression. In addition, key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes. At microbiological, genetic, bioinformatics, and biochemical levels, this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures. This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00224-2.

4.
Diabetes ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833271

RESUMO

Changes in microcirculation lead to the progression of organ pathology in diabetes. Although neuroimmune interactions contribute to a variety of conditions, it is still unclear whether abnormal neural activities affect microcirculation related to diabetes. Using laser speckle contrast imaging, we examined the skin of patients with type 2 diabetes and found that their microvascular perfusion was significantly compromised. This phenomenon was recapitulated in a high-fat-diet-driven murine model of type 2 diabetes-like disease. In this setting, although both macrophages and mast cells were enriched in the skin, only mast cells and associated degranulation were critically required for the microvascular impairment. Sensory neurons exhibited enhanced TRPV1 activities, which triggered mast cells to degranulate and compromise skin microcirculation. Chemical and genetic ablation of TRPV1+ nociceptors robustly improve skin microcirculation status. Substance P (SP) is a neuropeptide and was elevated in the skin and sensory neurons in the context of type 2 diabetes. Exogenous administration of SP resulted in impaired skin microcirculation, whereas neuronal knockdown of SP dramatically prevented mast cell degranulation and consequently improved skin microcirculation. Overall, our findings indicate a neural-mast cell axis underlying skin microcirculation disturbance in diabetes and shed light on neuroimmune therapeutics for diabetes-related complications.

5.
Data Brief ; 54: 110465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711736

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut-derived metabolite formed from dietary choline and l-carnitine, known to impede cholesterol metabolism and is implicated in the pathogenesis of thrombosis and atherosclerosis, contributing to the etiology of cardiovascular diseases. We present a dataset derived from an experimental study designed to elucidate the cardiotoxic effects of TMAO. This dataset encompasses echocardiographic assessments from two cohorts of mice: one subjected to a 6-week regimen of 20 mg/kg/day TMAO injections (n = 16) and a control group (n = 18). Each subject's echocardiographic dataset comprises six high-resolution TIFF images, capturing both B-type and M-mode views in standard echocardiographic planes, along with two additional M-mode images enriched with analysed cardiac functional data. Complementing these images, a CSV-formatted report details critical cardiac parameters, including heart rate, ejection fraction, and fractional shortening, among others. In a novel approach to enhance data integrity and permit tailored analyses, we provide the original output files from the echocardiography apparatus, which researchers can reprocess using dedicated analysis software. This dataset is anticipated to be instrumental in advancing our understanding of the mechanistic links between TMAO exposure and cardiac dysfunction.

6.
Lab Invest ; 104(7): 102087, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797344

RESUMO

Addressing the existing gaps in our understanding of sex- and strain-dependent disparities in renal microhemodynamics, this study conducted an investigation into the variations in renal function and related biological oscillators. Using the genetically diverse mouse models BALB/c, C57BL/6, and Kunming, which serve as established proxies for the study of renal pathophysiology, we implemented laser Doppler flowmetry conjoined with wavelet transform analyses to interrogate dynamic renal microcirculation. Creatinine, urea, uric acid, glucose, and cystatin C levels were quantified to investigate potential divergences attributable to sex and genetic lineage. Our findings reveal marked sexual dimorphism in metabolite concentrations, as well as strain-specific variances, particularly in creatinine and cystatin C levels. Through the combination of Mantel tests and Pearson correlation coefficients, we delineated the associations between renal functional metrics and microhemodynamics, uncovering interactions in female BALB/c mice for creatinine and uric acid, and in male C57BL/6 mice for cystatin C. Histopathologic examination confirmed an augmented microvascular density in female mice and elucidating variations in the expression of estrogen receptor ß among the strains. These data collectively highlight the influence of both sex and genetic constitution on renal microcirculation, providing an understanding that may inform the etiologic exploration of renal ailments.

8.
J Phys Chem Lett ; 15(19): 5103-5111, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38708945

RESUMO

The vast compositional space available in high-entropy oxide semiconductors offers unique opportunities for electronic band structure engineering in an unprecedented large room. In this work, with wide band gap semiconductor lithium niobate (LiNbO3) as a model system, we show that the substitutional addition of high-entropy metal cation mixtures within the Nb sublattice can lead to the formation of a single-phase solid solution featuring a substantially narrowed band gap and intense broadband visible light absorption. The resulting high-entropy LiNbO3 [denoted as Li(HE)O3] crystallizes as well-faceted nanocubes; atomic-resolution imaging and elemental mapping via transmission electron microscopy unveil a distinct local chemical complexity and lattice distortion, characteristics of high-entropy stabilized solid solution phases. Because of the presence of high-entropy stabilized Co2+ dopants that serve as active catalytic sites, Li(HE)O3 nanocubes can accomplish the visible light-driven photocatalytic water splitting in an aqueous solution containing methanol as a sacrificial electron donor without the need of any additional co-catalysts.

9.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612877

RESUMO

Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.


Assuntos
Hedera , Ácido Oleanólico/análogos & derivados , Saponinas , Glicosiltransferases/genética
10.
Ren Fail ; 46(1): 2329249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38482598

RESUMO

BACKGROUND: Renal microcirculation plays a pivotal role in kidney function by maintaining structural and functional integrity, facilitating oxygen and nutrient delivery, and waste removal. However, a thorough bibliometric analysis in this area remains lacking. Therefore, we aim to provide valuable insights through a bibliometric analysis of renal microcirculation literature using the Web of Science database. METHODS: We collected renal microcirculation-related publications from the Web of Science database from January 01, 1990, to December 31, 2022. The co-authorship of authors, organizations, and countries/regions was analyzed with VOSviewer1.6.18. The co-occurrence of keywords and co-cited references were analyzed using CiteSpace6.1.R6 software to generate visualization maps. Additionally, burst detection was applied to keywords and cited references to forecast research hotspots and future trends. RESULTS: Our search yielded 7462 publications, with the American Journal of Physiology-Renal Physiology contributing the most articles. The United States, Mayo Clinic, and Lerman Lilach O emerged with the highest publication count, indicating their active collaborations. 'Type 2 diabetes' was the most significant keyword cluster, and 'diabetic kidney disease' was the largest cluster of cited references. 'Cardiovascular outcome' and 'diabetic kidney diseases' were identified as keywords in their burst period over the past three years. CONCLUSION: Our bibliometric analysis illuminates the contours of nephrology and microcirculation research, revealing a landscape ripe for challenges and the seeds of future scientific innovation. While the trends discerned from the literature emerging opportunities in diagnostic innovation, renal microcirculation research, and precision medicine interventions, their translation to clinical practice is anticipated to be a deliberate process.


Assuntos
Nefropatias Diabéticas , Rim , Humanos , Microcirculação , Bibliometria , Bases de Dados Factuais
11.
ChemSusChem ; 17(6): e202301538, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38376216

RESUMO

Construction of S-scheme heterojunction offers a promising way to enhance the photocatalytic performance of photocatalysts for converting solar energy into chemical energy. However, the photocatalytic H2 production in pure water without sacrificial agents is still a challenge. Herein, the IEF-11 with the best photocatalytic H2 production performance in MOFs and suitable band structure was selected and firstly constructed with g-C3N4 to obtain a S-scheme heterojunction for photocatalytic H2 production from pure water. As a result, the novel IEF-11/g-C3N4 heterojunction photocatalysts exhibited significantly improved photocatalytic H2 production performance in pure water without any sacrificial agent, with a rate of 576 µmol/g/h, which is about 8 times than that of g-C3N4 and 23 times of IEF-11. The novel IEF-11/g-C3N4 photocatalysts also had a photocatalytic H2 production rate of up to 92 µmol/g/h under visible light and a good photocatalytic stability. The improved performance can be attributed to the efficient separation of photogenerated charge carriers, faster charge transfer efficiency and longer photogenerated carrier lifetimes, which comes from the forming of S-scheme heterojunction in the IEF-11/g-C3N4 photocatalyst. This work is a promising guideline for obtaining MOF-based or g-C3N4-based photocatalysts with great photocatalytic water splitting performance.

12.
Quant Imaging Med Surg ; 14(2): 1451-1465, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415135

RESUMO

Background: Microvascular dysfunction in patients with nonobstructive coronary artery disease is increasingly being recognized as an important health issue. This systematic review and meta-analysis evaluated the effectiveness of ranolazine, an antianginal agent, in improving coronary microvascular function. Methods: We conducted a comprehensive literature search of the Cochrane Library, PubMed, Embase, China National Knowledge Infrastructure, the Chinese BioMedical Literature Database, and gray literature databases until September 30, 2023. The included studies were randomized controlled trials (RCTs) published in the English or Chinese languages that screened for eligibility using two independent investigators. Risk of bias was evaluated with the Cochrane Collaboration tool. Subgroup and sensitivity analyses were used to identify sources of heterogeneity. Meta-analysis was performed using RevMan version 5.4 (Cochrane) and Stata version 16.0 (StataCorp). Results: From 1,470 citations, 8 RCTs involving 379 participants were included in this analysis. Our findings showed that ranolazine increased coronary flow reserve (CFR) over an 8 to 12-week follow-up period [standardized mean difference =1.16; 95% confidence interval (CI): 0.4-1.89; P=0.002]. Ranolazine increased the global myocardial perfusion reserve index (MPRI) [weighted mean difference (WMD) =0.18; 95% CI: 0.07-0.29; P=0.002] and the midsubendocardial MPRI (WMD =0.10; 95% CI: 0.02-0.19; P=0.02). Moreover, ranolazine improved 3 of the 5 Seattle Angina Questionnaire scores, namely, physical functioning (WMD =4.89; 95% CI: 0.14 to 9.64; P=0.04), angina stability (WMD =17.31; 95% CI: 7.13-27.49; P=0.0009), and quality of life (WMD =10.11; 95% CI: 3.57-16.65; P=0.0003). Trial sequential analysis showed that the meta-analysis of angina stability and quality of life scores had a sufficient sample size and statistical power. Conclusions: Our analysis suggests that ranolazine is associated with improvements in CFR, myocardial perfusion, and the Seattle Angina Questionnaire scores in patients with nonobstructive coronary artery disease. However, further large-scale RCTs with long-term follow-up are recommended to validate these findings and provide a more comprehensive understanding of the effects of ranolazine on coronary microvascular function.

13.
Int J Biol Macromol ; 259(Pt 2): 129445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232865

RESUMO

Local drug delivery has generated considerable interest due to its controlled and sustained drug release at the target site on demand. Nanoaggregate-incorporated composite hydrogels are desirable as local drug delivery systems; however, it is difficult to achieve sustained and controlled hydrophobic drug release and superior mechanical properties in one system. Herein, a "smart" composite hydrogel was synthesized by incorporating hemicellulose-based nanoaggregates into a double network consisting of alginate/Ca2+ and polyacrylic acid-co-dimethylaminoethyl methacrylate [P(AA-co-DMAEMA)]. Hemicellulose-based nanoaggregates were assembled from xylan-rich hemicellulose laurate methacrylate (XH-LA-MA) polymers and entrapped into the hydrogel framework via chemical fixation. Another composite hydrogel with physically embedded hemicellulose laurate (XH-LA) nanoaggregates was prepared as a comparison. Accordingly, covalently cross-linked XH-LA-MA nanoaggregates in hydrogels resulted in a denser pore structure and reinforced mechanical properties. Nanoaggregate diffusion analysis revealed that covalent bonding between the nanoaggregates and the hydrogel framework contributed to prolonged diffusion behavior. Curcumin (Cur)-loaded XH-LA-MA composite hydrogels enabled sustained Cur release in simulated body fluid and showed stimulus responsiveness toward ethylenediaminetetraacetic acid (EDTA) and/or glutathione (GSH). All the composite hydrogels were biocompatible, as verified by Cell Counting Kit-8 (CCK-8) assay against NIH/3T3 cells. These composite hydrogels hold great potential as a promising dosage form for biomedical applications.


Assuntos
Curcumina , Polissacarídeos , Animais , Camundongos , Curcumina/química , Hidrogéis/química , Lauratos , Metacrilatos
14.
J Control Release ; 365: 668-687, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042376

RESUMO

Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Oncologia , Fatores Imunológicos/uso terapêutico , Imunoterapia , Adjuvantes Imunológicos/uso terapêutico
15.
Microvasc Res ; 151: 104617, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918522

RESUMO

Type 1 diabetes mellitus (T1DM) is predominantly managed using insulin replacement therapy, however, pancreatic microcirculatory disturbances play a critical role in T1DM pathogenesis, necessitating alternative therapies. This study aimed to investigate the protective effects of glycine supplementation on pancreatic microcirculation in T1DM. Streptozotocin-induced T1DM and glycine-supplemented mice (n = 6 per group) were used alongside control mice. Pancreatic microcirculatory profiles were determined using a laser Doppler blood perfusion monitoring system and wavelet transform spectral analysis. The T1DM group exhibited disorganized pancreatic microcirculatory oscillation. Glycine supplementation significantly restored regular biorhythmic contraction and relaxation, improving blood distribution patterns. Further-more, glycine reversed the lower amplitudes of endothelial oscillators in T1DM mice. Ultrastructural deterioration of islet microvascular endothelial cells (IMECs) and islet microvascular pericytes, including membrane and organelle damage, collagenous fiber proliferation, and reduced edema, was substantially reversed by glycine supplementation. Additionally, glycine supplementation inhibited the production of IL-6, TNF-α, IFN-γ, pro-MMP-9, and VEGF-A in T1DM, with no significant changes in energetic metabolism observed in glycine-supplemented IMECs. A statistically significant decrease in MDA levels accompanied by an increase in SOD levels was also observed with glycine supplementation. Notably, negative correlations emerged between inflammatory cytokines and microhemodynamic profiles. These findings suggest that glycine supplementation may offer a promising therapeutic approach for protecting against pancreatic microcirculatory dysfunction in T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Microcirculação , Células Endoteliais , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Suplementos Nutricionais
16.
Medicine (Baltimore) ; 102(43): e35438, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904411

RESUMO

Using network pharmacology, molecular docking, and microRNA recognition, we have elucidated the mechanisms underlying the treatment of asthma by Jinxin oral liquid (JXOL). We began by identifying and normalizing the active compounds in JXOL through searches in the traditional Chinese medicine systems pharmacology database, SwissADME database, encyclopedia of traditional Chinese medicine database, HERB database, and PubChem. Subsequently, we gathered and standardized the targets of these active compounds from sources including the encyclopedia of traditional Chinese medicine database, similarity ensemble approach dataset, UniProt, and other databases. Disease targets were extracted from GeneCards, PharmGKB, OMIM, comparative toxicogenomics database, and DisGeNET. The intersection of targets between JXOL and asthma was determined using a Venn diagram. We visualized a Formula-Herb-Compound-Target-Disease network and a protein-protein interaction network using Cytoscape 3.9.0. Molecular docking studies were performed using Schrodinger software. To identify pathways related to asthma, we conducted gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis using Metascape. MicroRNAs regulating the hub genes were obtained from the miRTarBase database, and a network linking these targets and miRNAs was constructed. Finally, we found 88 bioactive components in JXOL and 218 common targets with asthma. Molecular docking showed JXOL key compounds strongly bind to HUB targets. According to gene ontology biological process analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, the PI3K-Akt signaling pathway, the MAPK signaling pathway, or the cAMP signaling pathway play a key role in treating of asthma by JXOL. The HUB target-miRNA network showed that 6 miRNAs were recognized. In our study, we have revealed for the first time the unique components, multiple targets, and diverse pathways in JXOL that underlie its mechanism of action in treating asthma through miRNAs.


Assuntos
Asma , Medicamentos de Ervas Chinesas , MicroRNAs , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Asma/tratamento farmacológico , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
17.
Invest Ophthalmol Vis Sci ; 64(10): 28, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37477931

RESUMO

Purpose: The purpose of this study was to investigate the relationship between axial length (AL) growth and FBN1 genotype in patients with Marfan syndrome (MFS) after lens surgery and customize the selection of intraocular lens (IOL) power. Methods: Patients with MFS who had lens surgery and primary IOL implantation received panel-based next-generation sequencing (NGS). The rate of axial length growth (RALG) was calculated using pre- and postoperative AL measurements and corrected log10-transformed age. A multivariable regression model of RALG was developed after analyzing the effect of FBN1 genotypes and confounding factors. Results: A total of 139 probands of MFS with a median age at lens surgery of 6.25 years (interquartile range [IQR] = 4.67, 12.50 years) were followed up for a median duration of 2.08 years (IQR = 1.16, 3.00 years). The AL growth curve between the age of 3 and 15 years old was logarithmic. Dominant-negative (DN) variants affecting the disulfide-bridge forming cysteines and the conserved residues for calcium-binding had significantly higher RALG than DN variants affecting other structures (P = 0.001) but comparable to that of haplo-insufficiency variants (P = 1.000). Pre-operative AL (b = 0.563, P = 0.011) and genotype constant (b = 2.603, P = 0.011) were significantly associated with RALG in the final model. A Python-based calculator, Marfan IOL Calculator version 2.0, was programmed using the RALG to predict postoperative AL and customize IOL selection based on the ocular biometric parameters and FBN1 genotype. Conclusions: FBN1 genotype impacted the growth of AL in patients with MFS after IOL implantation. Knowing the FBN1 genotype could help cataract surgeons to customize IOL selection.


Assuntos
Catarata , Lentes Intraoculares , Síndrome de Marfan , Humanos , Pré-Escolar , Criança , Adolescente , Implante de Lente Intraocular , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Olho , Catarata/complicações , Genótipo
18.
Front Public Health ; 11: 1141981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441652

RESUMO

Introduction: In recent years, China has implemented the Diagnosis Related Groups (DRG) payment system as part of its healthcare insurance reimbursement policy. Numerous studies have focused on the effectiveness of DRG payment system in controlling unreasonable growth in medical expenses. However, there has been no systematic report on the types of unintended behaviors exhibited by doctors under the DRG payment system. Methods: The study first utilized interrupted time series analysis to analyze medical records and insurance data from eight hospitals. It investigated the data changes in MDC and ADRG groups before and after the implementation of the DRG payment system. Subsequently, a semi-structured interview method was employed to conduct qualitative research on the unintended behaviors of physicians, aiming to gain a more accurate understanding of specific changes in physician behavior after the implementation of the DRG payment system. Results: This study discovered that doctors engage in unintended behaviors within the framework of the DRG payment system. Discussion: In the early implementation of the DRG payment system in China, the contradictions between the flawed DRG payment methods and supporting systems and the actual diagnostic and treatment work manifested in the form of unintended doctor behaviors. Most of these unintended behaviors can be considered reasonable feedback from doctors to cope with the existing system flaws. They are conducive to identifying the deficiencies in China's DRG payment system and suggesting directions for improvement.


Assuntos
Grupos Diagnósticos Relacionados , Médicos , Humanos , Política de Saúde , Hospitais Públicos , China
19.
Front Microbiol ; 14: 1174308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260689

RESUMO

Introduction: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by recurrent and remitting inflammation of the mucosa of the colon and rectum, the incidence of which is on the rise. Glucagon-like peptide-2 (GLP-2) is a newly discovered neurotrophic factor, but its efficacy and mechanism of action in UC remain unclear. In this study, we investigated the protective effects and potential targets of GLP-2 on dextran sodium sulfate (DSS)-induced UC in mice through integrative analysis. Methods: The effects of GLP-2 on UC were assessed by calculating the disease activity index, colonic mucosal damage index, and pathological histological scores. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were used to detect the expression of GLP-2, nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3). The 16SrRNA gene was used to detect changes in gut microbiota in mouse colonic tissues, and oral glucose tolerance test (OGTT) blood glucose levels were used to analyze the differences in flora. Results: The results showed that GLP-2 could reduce the inflammation of UC mice, which may be achieved by inhibiting the potential targets of NF-κB, and Janus kinase (JAK)/STAT3 inflammatory pathways, regulating sugar metabolism, increasing dominant species, and improving microbial diversity. Discussion: This study provides new insight into the potential of GLP-2 for achieving more ideal UC treatment goals in future.

20.
Int J Biol Macromol ; 242(Pt 4): 125133, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263323

RESUMO

Cellulose acetate (CA) is one of the most important cellulose plastics that has demonstrated extensive applications in many areas. In search of a more sustainable and efficient way to prepare CA, we synthesized a novel ionic liquid, [DBUC8]Cl, based on the commonly used catalyst DBU (1,8-diazabicyclo[5.4.0]undecyquin-7-ene) in a simple manner. [DBUC8]Cl can dissolve cellulose more efficiently than the same type of imidazolyl ionic liquid, owing to the stronger alkalinity of DBU. It is noteworthy that highly substituted CA (DS = 2.82) was successfully synthesized via transesterification with alkenyl ester under mild conditions (80 °C, 40 min) without the addition of a catalyst in this solvent, which is superior to most of the reported work. Furthermore, we confirmed that the synthesized CA had good thermoplasticity, and a transparent cellulose acetate film (CAF) was obtained by hot pressing with a small amount of glycerol. Therefore, we propose a new DBU-derived ionic liquid, which may serve as a versatile platform system for producing cellulose-derived bioplastics more sustainably and efficiently.


Assuntos
Líquidos Iônicos , Solventes , Esterificação , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...