Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Pollut ; 145(1): 22-30, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16781030

RESUMO

Nitrogen (N) remaining as inorganic ('mineral') soil N at crop harvest (N(minH)) contributes to nitrate leaching. N(minH) data from 20 (grass) and 78 (maize) experiments were examined to identify main determinants of N(minH). N-rate (A) explained 51% (grass) and 34% (maize) of the variance in N(minH). Best models included in addition crop N-offtake (U), offtake in unfertilised plots (U(0)), and N(minH) in unfertilised plots (N(minH,0)) and then explained up to 75% of variance. At low N-rates where apparent N recovery rho keeps to its initial value rho(ini), N(minH) keeps to its base level N(minH,0). At N-rates that exceed the value A(crit) where rho drops below rho(ini), N(minH) rises above N(minH,0) by an amount proportional to (rho(ini)-rho)A. About 80% of (rho(ini)-rho)A was found as N(minH,) in grass as well as in maize. The fraction (1-rho(ini))A does not appear to contribute to N(minH) at low N-rates (A< or =A(crit)) or at high N-rates (A>A(crit)).


Assuntos
Nitrogênio/análise , Poaceae/química , Solo/análise , Zea mays/química , Análise de Variância , Precipitação Química , Modelos Estatísticos , Países Baixos
2.
Environ Pollut ; 118(2): 225-38, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11939285

RESUMO

Data from nitrogen (N) response experiments on grassland in Belgium and the Netherlands were analysed with the help of a descriptive crop N response model, to identify permissible doses below which no accumulation occurs of residual mineral soil N in autumn. N(min). Using different years as separate sets, a total of 29 data sets were obtained from eight locations on various soil types. A large variation was found in N(min) base levels (unfertilised) between locations and between years at a given location. For doses low enough not to affect crop N recovery, every 100 kg N applied was associated with 3-4 kg residual N(min) in autumn. This is considered very low compared to N(min) base levels, but values differed significantly from zero. After normalising N-doses from different sources (mineral fertiliser and cattle slurry) with the help of a coefficient expressing effectiveness based on crop N uptake, no difference was found between fertiliser and slurry in terms of their effect on residual Nmin. The above also holds for nitrate leaching as measured. The sources do differ, however, with respect to long-term effects and these are quantified with a first-order approximation. It it shown that, also after incorporation of long-term effects, much higher N-doses on grassland are justified than the 170 kg N per ha per year in animal manures currently proposed by the European Commission. On normal productive cut grassland as in the analysed experiments, total N doses in cattle slurry up to 400 kg per ha per year have very little effect on residual N(min), if not accompanied by high fertiliser doses. Introducing limits to the use of animal manures on grassland without limiting the input of mineral fertiliser-N lacks any scientific ground.


Assuntos
Nitrogênio/farmacocinética , Poaceae , Poluentes do Solo/análise , Poluentes da Água/análise , Ecossistema , Monitoramento Ambiental , Fertilizantes , Esterco , Nitrogênio/análise , Nitrogênio/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...