Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Monit ; 7(4): 302-10, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15798796

RESUMO

Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Conceitos Meteorológicos , Tamanho da Partícula , Poluentes Atmosféricos/química , Cidades , Exposição Ambiental , Europa (Continente) , Humanos , Umidade , Análise de Regressão , Estações do Ano , Temperatura , Saúde da População Urbana , Vento
2.
Environ Health Perspect ; 112(3): 369-77, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14998755

RESUMO

Given the hypothesis that air pollution is associated with elevated blood pressure and heart rate, the effect of daily concentrations of air pollution on blood pressure and heart rate was assessed in 131 adults with coronary heart disease in Helsinki, Finland; Erfurt, Germany; and Amsterdam, the Netherlands. Blood pressure was measured by a digital monitor, and heart rate was calculated as beats per minute from an electrocardiogram recording with the patient in supine position. Particle concentrations were measured at central measuring sites. Linear regression was used to model the association between 24-hr mean concentrations of particles and blood pressure and heart rate. Estimates were adjusted for trend, day of week, temperature, barometric pressure, relative humidity, and medication use. Pooled effect estimates showed a small significant decrease in diastolic and systolic blood pressure in association with particulate air pollution; a slight decrease in heart rate was found. Of the three centers, Erfurt revealed the most consistent particle effects. The results do not support findings from previous studies that had shown an increase in blood pressure and heart rate in healthy individuals in association with particles. However, particle effects might differ in cardiac patients because of medication intake and disease status, both affecting the autonomic control of the heart.


Assuntos
Poluentes Atmosféricos/intoxicação , Pressão Sanguínea , Doenças Cardiovasculares/etiologia , Frequência Cardíaca , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/fisiopatologia , Estudos Epidemiológicos , Feminino , Finlândia , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Tamanho da Partícula , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...