Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 72: 62-71, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216939

RESUMO

Amyloid-ß (Aß) plaques are a prominent pathological hallmark of Alzheimer's disease (AD). They consist of aggregated Aß peptides, which are generated through sequential proteolytic processing of the transmembrane protein amyloid precursor protein (APP) and several Aß-associated factors. Efficient clearance of Aß from the brain is thought to be important to prevent the development and progression of AD. The ubiquitin-proteasome system (UPS) is one of the major pathways for protein breakdown in cells and it has been suggested that impaired UPS-mediated removal of protein aggregates could play an important role in the pathogenesis of AD. To study the effects of an impaired UPS on Aß pathology in vivo, transgenic APPSwe/PS1ΔE9 mice (APPPS1) were crossed with transgenic mice expressing mutant ubiquitin (UBB+1), a protein-based inhibitor of the UPS. Surprisingly, the APPPS1/UBB+1 crossbreed showed a remarkable decrease in Aß plaque load during aging. Further analysis showed that UBB+1 expression transiently restored PS1-NTF expression and γ-secretase activity in APPPS1 mice. Concurrently, UBB+1 decreased levels of ß-APP-CTF, which is a γ-secretase substrate. Although UBB+1 reduced Aß pathology in APPPS1 mice, it did not improve the behavioral deficits in these animals.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Comportamento Animal , Placa Amiloide/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...