Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225196

RESUMO

Perineuronal nets (PNNs) are mesh-like structures on the surfaces of parvalbumin-expressing inhibitory and other neurons, and consist of proteoglycans such as aggrecan, brevican, and neurocan. PNNs regulate the Excitatory/Inhibitory (E/I) balance in the brain and are formed at the closure of critical periods of plasticity during development. PNN formation is disrupted in Fragile X Syndrome, which is caused by silencing of the fragile X messenger ribonucleoprotein 1 (Fmr1) gene and loss of its protein product FMRP. FXS is characterized by impaired synaptic plasticity resulting in neuronal hyperexcitability and E/I imbalance. Here, we investigate how PNN formation is altered in FXS. PNNs are reduced in Fmr1 KO mouse brain when examined by staining for the lectin Wisteria floribunda agglutin (WFA) and aggrecan. Examination of PNNs by WFA staining at P14 and P42 in the hippocampus, somatosensory cortex, and retrosplenial cortex shows that they were reduced in these brain regions at P14 but mostly less so at P42 in Fmr1 KO mice. However, some differential FMRP regulation of PNN development in these brain regions persists, perhaps caused by asynchrony in PNN development between brain regions in wild-type animals. During development, aggrecan PNN levels in the brain were reduced in all brain regions in Fmr1 KO mice. Aggrecan mRNA levels were unchanged at these times, suggesting that FMRP is normally an activator of aggrecan mRNA translation. This hypothesis is buttressed by the observations that FMRP binds aggrecan mRNA and that ribosome profiling data show that aggrecan mRNA is associated with reduced numbers of ribosomes in Fmr1 KO mouse brain, indicating reduced translational efficiency. Moreover, aggrecan mRNA poly(A) tail length is also reduced in Fmr1 KO mouse brain, suggesting a relationship between polyadenylation and translational control. We propose a model where FMRP modulates PNN formation through translational up-regulation of aggrecan mRNA polyadenylation and translation.

2.
Gene ; 858: 147167, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36621656

RESUMO

A hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic alteration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These neurodegenerative diseases share genetic, clinical and pathological features. The mutation in C9ORF72 appears to drive pathogenesis through a combination of loss of C9ORF72 normal function and gain of toxic effects due to the repeat expansion, which result in aggregation prone expanded RNAs and dipeptide repeat (DPR) proteins. Studies in cellular and animal models indicate that the DPR proteins are the more toxic species. Thus, a large body of research has focused on identifying the cellular pathways most directly impacted by these toxic proteins, with the goal of characterizing disease pathogenesis and nominating potential targets for therapeutic development. The preventative block of the production of the toxic proteins before they can cause harm is a second strategy of intense focus. Despite the considerable amount of effort dedicated to this prophylactic approach, it is still unclear how the DPR proteins are synthesized from RNAs harboring repeat expansions. In this review, we summarize our current knowledge of the specific protein translation mechanisms shown to account for the synthesis of DPR proteins. We will then discuss how enhanced understanding of the composition of these toxic effectors could help in refining disease mechanisms, and paving the way to identify and design effective prophylactic therapies for C9ORF72 ALS-FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Dipeptídeos/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Proteínas/metabolismo , RNA
3.
Glia ; 70(10): 1850-1863, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635122

RESUMO

Microglia are myeloid cells of the central nervous system that perform tasks essential for brain development, neural circuit homeostasis, and neural disease. Microglia react to inflammatory stimuli by upregulating inflammatory signaling through several different immune cell receptors such as the Toll-like receptor 4 (TLR4), which signals to several downstream effectors including transforming growth factor beta-activated kinase 1 (TAK1). Here, we show that TAK1 levels are regulated by CPEB1, a sequence-specific RNA binding protein that controls translation as well as RNA splicing and alternative poly(A) site selection in microglia. Lipopolysaccharide (LPS) binds the TLR4 receptor, which in CPEB1-deficient mice leads to elevated expression of ionized calcium binding adaptor molecule 1 (Iba1), a microglial protein that increases with inflammation, and increased levels of the cytokine IL6. This LPS-induced IL6 response is blocked by inhibitors of JNK, p38, ERK, NFκB, and TAK1. In contrast, phagocytosis, which is elevated in CPEB1-deficient microglia, is unaffected by LPS treatment or ERK inhibition, but is blocked by TAK1 inhibition. These data indicate that CPEB1 regulates microglial inflammatory responses and phagocytosis. RNA-seq indicates that these changes in inflammation and phagocytosis are accompanied by changes in RNA levels, splicing, and alternative poly(A) site selection. Thus, CPEB1 regulation of RNA expression plays a role in microglial function.


Assuntos
Microglia , Fagocitose , Poliadenilação , Fatores de Transcrição , Fatores de Poliadenilação e Clivagem de mRNA , Animais , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
4.
RNA ; 28(2): 123-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34848561

RESUMO

GGGGCC (G4C2) repeat expansion in the first intron of C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia. Repeat-containing RNA is translated into dipeptide repeat (DPR) proteins, some of which are neurotoxic. Using dynamic ribosome profiling, we identified three translation initiation sites in the intron upstream of (G4C2) repeats; these sites are detected irrespective of the presence or absence of the repeats. During translocation, ribosomes appear to be stalled on the repeats. An AUG in the preceding C9ORF72 exon initiates a uORF that inhibits downstream translation. Polysome isolation indicates that unspliced (G4C2) repeat-containing RNA is a substrate for DPR protein synthesis. (G4C2) repeat-containing RNA translation is 5' cap-independent but inhibited by the initiation factor DAP5, suggesting an interplay with uORF function. These results define novel translational mechanisms of expanded (G4C2) repeat-containing RNA in disease.


Assuntos
Proteína C9orf72/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/química , Ribossomos/metabolismo , Proteína C9orf72/metabolismo , Repetições de Dinucleotídeos , Células HEK293 , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Neural Plast ; 2019: 6804575, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772567

RESUMO

The perineuronal net (PNN) is a mesh-like proteoglycan structure on the neuronal surface which is involved in regulating plasticity. The PNN regulates plasticity via multiple pathways, one of which is direct regulation of synapses through the control of AMPA receptor mobility. Since neuronal pentraxin 2 (Nptx2) is a known regulator of AMPA receptor mobility and Nptx2 can be removed from the neuronal surface by PNN removal, we investigated whether Nptx2 has a function in the PNN. We found that Nptx2 binds to the glycosaminoglycans hyaluronan and chondroitin sulphate E in the PNN. Furthermore, in primary cortical neuron cultures, the addition of NPTX2 to the culture medium enhances PNN formation during PNN development. These findings suggest Nptx2 as a novel PNN binding protein with a role in the mechanism of PNN formation.


Assuntos
Proteína C-Reativa/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Satélites Perineuronais/metabolismo , Córtex Visual/metabolismo , Animais , Células Cultivadas , Feminino , Rede Nervosa/química , Rede Nervosa/citologia , Plasticidade Neuronal/fisiologia , Neurônios/química , Neurônios/metabolismo , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Células Satélites Perineuronais/química , Córtex Visual/química , Córtex Visual/citologia
6.
Front Integr Neurosci ; 11: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249944

RESUMO

Perineuronal nets (PNNs) are mesh-like structures, composed of a hierarchical assembly of extracellular matrix molecules in the central nervous system (CNS), ensheathing neurons and regulating plasticity. The mechanism of interactions between PNNs and neurons remain uncharacterized. In this review, we pose the question: how do PNNs regulate communication to and from neurons? We provide an overview of the current knowledge on PNNs with a focus on the cellular interactions. PNNs ensheath a subset of the neuronal population with distinct molecular aspects in different areas of the CNS. PNNs control neuronal communication through molecular interactions involving specific components of the PNNs. This review proposes that the PNNs are an integral part of neurons, crucial for the regulation of plasticity in the CNS.

7.
Biol Psychiatry ; 78(7): 485-95, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802080

RESUMO

BACKGROUND: Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. METHODS: Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. RESULTS: Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. CONCLUSIONS: This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes.


Assuntos
Atividade Motora/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Sensório-Motor/patologia , Filtro Sensorial/fisiologia , Percepção Social , Animais , Aprendizagem por Associação/fisiologia , Mapeamento Cromossômico , Cognição/fisiologia , Dendritos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Fenótipo , Locos de Características Quantitativas , Córtex Sensório-Motor/crescimento & desenvolvimento , Córtex Sensório-Motor/fisiopatologia , Filtro Sensorial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...