Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1121973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026005

RESUMO

Recurrent disease emerges in the majority of patients with ovarian cancer (OVCA). Adoptive T-cell therapies with T-cell receptors (TCRs) targeting tumor-associated antigens (TAAs) are considered promising solutions for less-immunogenic 'cold' ovarian tumors. In order to treat a broader patient population, more TCRs targeting peptides derived from different TAAs binding in various HLA class I molecules are essential. By performing a differential gene expression analysis using mRNA-seq datasets, PRAME, CTCFL and CLDN6 were selected as strictly tumor-specific TAAs, with high expression in ovarian cancer and at least 20-fold lower expression in all healthy tissues of risk. In primary OVCA patient samples and cell lines we confirmed expression and identified naturally expressed TAA-derived peptides in the HLA class I ligandome. Subsequently, high-avidity T-cell clones recognizing these peptides were isolated from the allo-HLA T-cell repertoire of healthy individuals. Three PRAME TCRs and one CTCFL TCR of the most promising T-cell clones were sequenced, and transferred to CD8+ T cells. The PRAME TCR-T cells demonstrated potent and specific antitumor reactivity in vitro and in vivo. The CTCFL TCR-T cells efficiently recognized primary patient-derived OVCA cells, and OVCA cell lines treated with demethylating agent 5-aza-2'-deoxycytidine (DAC). The identified PRAME and CTCFL TCRs are promising candidates for the treatment of patients with ovarian cancer, and are an essential addition to the currently used HLA-A*02:01 restricted PRAME TCRs. Our selection of differentially expressed genes, naturally expressed TAA peptides and potent TCRs can improve and broaden the use of T-cell therapies for patients with ovarian cancer or other PRAME or CTCFL expressing cancers.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos de Linfócitos T , Humanos , Feminino , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a DNA/metabolismo
2.
Mol Ther Methods Clin Dev ; 28: 249-261, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36816758

RESUMO

The balance between safety and efficacy of T cell therapies remains challenging and T cell mediated toxicities have occurred. The stringent selection of tumor-specific targets and careful selection of tumor-specific T cells using T cell toxicity screenings are essential. In vitro screening options against vital organs or specialized cell subsets would be preferably included in preclinical pipelines, but options remain limited. Here, we set up preclinical models with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, epicardial cells, and kidney organoids to investigate toxicity risks of tumor-specific T cells more thoroughly. CD8+T cells reactive against PRAME, HA-1H, CD20, or WT1, currently used or planned to be used in phase I/II clinical studies, were included. Using these hiPSC-derived preclinical models, we demonstrated that WT1-specific T cells caused on-target toxicity that correlated with target gene expression. Multiple measures of T cell reactivity demonstrated this toxicity on the level of T cells and hiPSC-derived target cells. In addition, phenotypic analysis illustrated interaction and crosstalk between infiltrated T cells and kidney organoids. In summary, we demonstrated the benefit of hiPSC-derived models in determining toxicity risks of tumor-specific T cells. Furthermore, our data emphasizes the additional value of other measures of T cell reactivity on top of the commonly used cytokine levels.

3.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728869

RESUMO

BACKGROUND: Transcription factor Wilms' tumor gene 1 (WT1) is an ideal tumor target based on its expression in a wide range of tumors, low-level expression in normal tissues and promoting role in cancer progression. In clinical trials, WT1 is targeted using peptide-based or dendritic cell-based vaccines and T-cell receptor (TCR)-based therapies. Antitumor reactivities were reported, but T-cell reactivity is hampered by self-tolerance to WT1 and limited number of WT1 peptides, which were thus far selected based on HLA peptide binding algorithms. METHODS: In this study, we have overcome both limitations by searching in the allogeneic T-cell repertoire of healthy donors for high-avidity WT1-specific T cells, specific for WT1 peptides derived from the HLA class I associated ligandome of primary leukemia and ovarian carcinoma samples. RESULTS: Using broad panels of malignant cells and healthy cell subsets, T-cell clones were selected that demonstrated potent and specific anti-WT1 T-cell reactivity against five of the eight newly identified WT1 peptides. Notably, T-cell clones for WT1 peptides previously used in clinical trials lacked reactivity against tumor cells, suggesting limited processing and presentation of these peptides. The TCR sequences of four T-cell clones were analyzed and TCR gene transfer into CD8+ T cells installed antitumor reactivity against WT1-expressing solid tumor cell lines, primary acute myeloid leukemia (AML) blasts, and ovarian carcinoma patient samples. CONCLUSIONS: Our approach resulted in a set of naturally expressed WT1 peptides and four TCRs that are promising candidates for TCR gene transfer strategies in patients with WT1-expressing tumors, including AML and ovarian carcinoma.


Assuntos
Leucemia Mieloide Aguda , Neoplasias Ovarianas , Receptores de Antígenos de Linfócitos T , Proteínas WT1 , Linfócitos T CD8-Positivos/imunologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/terapia , Feminino , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Peptídeos/imunologia , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas WT1/imunologia
4.
Proteomics ; 17(23-24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28722786

RESUMO

Lung cancer is responsible for the highest rate of cancer mortality worldwide. Lung cancer patients are often ineligible for tumor biopsies due to comorbidities. As a result, patients may not have the most effective treatment regimens administered. Patients with mutations in the epidermal growth factor receptor (EGFR) have improved survival in response to EGFR tyrosine kinase inhibitors. A noninvasive method of determining EGFR mutations in patients would have promising clinical applications. Exosomes have the potential to be noninvasive novel diagnostic markers in cancer. Using MS analysis, we identify differentially abundant cell and exosome proteins induced by mutations in p53 and EGFR in lung cells. Importantly, mutations in p53 and EGFR alter cell and exosome protein content compared to an isogenic normal lung epithelial cell. For some proteins, mutation had similar effects in the cell of origin and exosomes. Differences between the cells of origin and exosomes were also apparent, which may reflect specific packaging of proteins into exosomes. These findings that mutations alter protein abundance in exosomes suggest that analysis of exosomes may be beneficial in the diagnosis of oncogenic mutations.


Assuntos
Transformação Celular Neoplásica/metabolismo , Receptores ErbB/genética , Exossomos/metabolismo , Neoplasias Pulmonares/metabolismo , Mutação , Proteína Supressora de Tumor p53/genética , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Supressora de Tumor p53/metabolismo
5.
Int J Cancer ; 141(3): 614-620, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28445609

RESUMO

Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Exossomos/patologia , Neoplasias Pulmonares/patologia , Mesoderma/patologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Células Tumorais Cultivadas
6.
Ecancermedicalscience ; 10: 684, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27899957

RESUMO

Next-generation sequencing (NGS) has reached the molecular diagnostic laboratories. Although the NGS technology aims to improve the effectiveness of therapies by selecting the most promising therapy, concerns are that NGS testing is expensive and that the 'benefits' are not yet in relation to these costs. In this study, we give an estimation of the costs and an institutional and national budget impact of various types of NGS tests in non-small-cell lung cancer (NSCLC) and melanoma patients within The Netherlands. First, an activity-based costing (ABC) analysis has been conducted on the costs of two examples of NGS panels (small- and medium-targeted gene panel (TGP)) based on data of The Netherlands Cancer Institute (NKI). Second, we performed a budget impact analysis (BIA) to estimate the current (2015) and future (2020) budget impact of NGS on molecular diagnostics for NSCLC and melanoma patients in The Netherlands. Literature, expert opinions, and a data set of patients within the NKI (n = 172) have been included in the BIA. Based on our analysis, we expect that the NGS test cost concerns will be limited. In the current situation, NGS can indeed result in higher diagnostic test costs, which is mainly related to required additional tests besides the small TGP. However, in the future, we expect that the use of whole-genome sequencing (WGS) will increase, for which it is expected that additional tests can be (partly) avoided. Although the current clinical benefits are expected to be limited, the research potentials of NGS are already an important advantage.

7.
Br J Haematol ; 173(2): 219-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26814163

RESUMO

Chemotherapy resistant leukaemic stem cells (LSC) are thought to be responsible for relapses after therapy in acute myeloid leukaemia (AML). Flow cytometry can discriminate CD34(+) CD38(-) LSC and normal haematopoietic stem cells (HSC) by using aberrant expression of markers and scatter properties. However, not all LSC can be identified using currently available markers, so new markers are needed. CD45RA is expressed on leukaemic cells in the majority of AML patients. We investigated the potency of CD45RA to specifically identify LSC and HSC and improve LSC quantification. Compared to our best other markers (CLL-1, also termed CLEC12A, CD33 and CD123), CD45RA was the most reliable marker. Patients with high percentages (>90%) of CD45RA on CD34(+) CD38(-) LSC have 1·69-fold higher scatter values compared to HSC (P < 0·001), indicating a more mature CD34(+) CD38(-) phenotype. Patients with low (<10%) or intermediate (10-90%) CD45RA expression on LSC showed no significant differences to HSC (1·12- and 1·15-fold higher, P = 0·31 and P = 0·44, respectively). CD45RA-positive LSC tended to represent more favourable cytogenetic/molecular markers. In conclusion, CD45RA contributes to more accurate LSC detection and is recommended for inclusion in stem cell tracking panels. CD45RA may contribute to define new LSC-specific therapies and to monitor effects of anti-LSC treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Antígenos Comuns de Leucócito/metabolismo , Recidiva Local de Neoplasia/diagnóstico , Células-Tronco Neoplásicas/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD34/metabolismo , Medula Óssea/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...